Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Magnetic approaches for Tissue Mechanics and Engineering

Descrizione del progetto

La manipolazione magnetica delle cellule a sostegno di una pionieristica ingegneria tissutale

Le cellule rispondono a diversi segnali, tra cui di tipo meccanico, chimico, elettrico e magnetico. Tra questi, il magnetismo è forse il meno esplorato quando si tratta di controllare e modulare la formazione dei tessuti per l’ingegneria tissutale. Il progetto MaTissE, finanziato dal Consiglio europeo della ricerca, introdurrà in modo sicuro nanoparticelle magnetiche nelle cellule terapeutiche, consentendo loro di essere manipolate a distanza da magneti esterni. Utilizzando la loro tecnica brevettata per manipolare le cellule magnetizzate, la squadra formerà tessuti con dimensioni e forme controllate attraverso un innovativo «bioreattore magnetico». L’intrinseca facilità di utilizzo della risonanza magnetica in tutte le fasi del processo ne faciliterà l’adozione clinica. Inoltre, i metodi nanomagnetici saranno utilizzati per studiare il destino dei nanomateriali in situ.

Obiettivo

"While magnetic nanomaterials are increasingly used as clinical agents for imaging and therapy, their use as a tool for tissue engineering opens up challenging perspectives that have rarely been explored. Lying at the interface between biophysics and nanomedicine, and based on magnetic techniques, the proposed project aims to magnetically design functional tissues and to explore the tissular fate of nanomaterials. Magnetic nanoparticles will be safely introduced into therapeutic cells, thus allowing them to be remotely manipulated by external magnets. 3D manipulations of the magnetized cells (patented in 2012) will be used to form tissues with a controlled size and shape through the development of a unique magnetic bioreactor. In a self-integrating all-in-one process, 3D tissue will be shaped from cellular ""bricks"" without the need for a scaffold. The magnetic tissue will be amenable to mechanical stimulation and in situ imaging at each step of its maturation. The project is inherently multidisciplinary:
1) From a biophysics standpoint, controlled tissue stimulation, forced cell alignment, and mapping of cell-cell forces, will be used to answer pressing questions on the role of physical stresses in cell and tissue functions, such as differentiation.
2) From a regenerative medicine standpoint, this magnetic technology will be applied to cartilage and cardiac tissue repair. The functionality of the constructs and their centimetric size range, combined with a surgeon-friendly tissue handling with a dedicated magnetic tool, and the inherent magnetic resonance imaging properties of the constructs will be major advantages for clinical translation.
3) From a nanomaterials standpoint, nanomaterial fate will be explored in situ using nanomagnetic methods, both at the tissue scale (macroscopic) and at the nanoscale. This is a necessary corollary for the use of nanomaterials in regenerative medicine, and one that is largely unexplored."

Meccanismo di finanziamento

ERC-COG - Consolidator Grant

Istituzione ospitante

UNIVERSITE PARIS CITE
Contribution nette de l'UE
€ 1 307 625,00
Indirizzo
85 BD SAINT GERMAIN
75006 Paris
Francia

Mostra sulla mappa

Regione
Ile-de-France Ile-de-France Paris
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 589 000,00

Beneficiari (2)