Objetivo
Recent years witness an upsurge in the quantities of digital research data, offering new insights and opportunities for improved understanding. Text and data mining is emerging as a powerful tool for harnessing the power of structured and unstructured content and data, by analysing them at multiple levels and in several dimensions to discover hidden and new knowledge. However, text mining solutions are not easy to discover and use, nor are they easily combinable by end users. OpenMinTeD aspires to enable the creation of an infrastructure that fosters and facilitates the use of text mining technologies in the scientific publications world, builds on existing text mining tools and platforms, and renders them discoverable and interoperablethrough appropriate registriesand a standards-based interoperability layer, respectively. It supports training of text mining users and developers alike and demonstrates the merits of the approach through several use cases identified by scholars and experts from different scientific areas, ranging from generic scholarly communication to literaturerelated tolife sciences, food and agriculture, and social sciences and humanities. Through its infrastructural activities, OpenMinTeD’s vision is tomake operational a virtuous cycle in which a) primary content is accessed through standardised interfaces and access rules b) by well-documented and easily discoverable text mining services that process, analyse, and annotate text c) to identify patterns and extract new meaningful actionable knowledge, which will be used d) for structuring, indexing, and searching content and, in tandem, e) acting as new knowledge useful to draw new relations between content items and firing a new mining cycle. To achieve its goals, OpenMinTeD brings together different stakeholders, content providers and scientific communities, text mining and infrastructure builders, legal experts, data and computing centres, industrial players, and SMEs.
Ámbito científico
- natural sciencescomputer and information sciencesdata sciencenatural language processing
- natural sciencescomputer and information sciencesdata sciencedata mining
- social scienceseconomics and businessbusiness and managementbusiness models
- social scienceseconomics and businesseconomicsproduction economicsproductivity
- agricultural sciencesagriculture, forestry, and fisheriesagriculture
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-EINFRA-2014-2
Régimen de financiación
RIA - Research and Innovation actionCoordinador
151 25 Maroussi
Grecia
Ver en el mapa
Participantes (17)
M13 9PL Manchester
Ver en el mapa
64289 Darmstadt
Ver en el mapa
75007 Paris
Ver en el mapa
69117 Heidelberg
Ver en el mapa
15126 Marousi
Ver en el mapa
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.
2595 BE Den Haag
Ver en el mapa
1012WX Amsterdam
Ver en el mapa
MK7 6AA Milton Keynes
Ver en el mapa
1015 Lausanne
Ver en el mapa
La participación finalizó
28029 Madrid
Ver en el mapa
S10 2TN Sheffield
Ver en el mapa
68159 Mannheim
Ver en el mapa
11523 Athina
Ver en el mapa
1005 LAUSANNE
Ver en el mapa
La participación finalizó
FK9 4LA Stirling
Ver en el mapa
G12 8QQ Glasgow
Ver en el mapa
08034 Barcelona
Ver en el mapa