Ziel
                                The aim of this project is to consider X a smooth projective algebraic curve and a representation ρ of π1(X) into a semisimple Lie group G, and study deformations of ρ when X deforms into a singular curve. This question will open a brand new direction in the theory of representations of fundamental groups and G-Higgs bundles. The main tool to approach the problem will be non- abelian Hodge theory to transform this topological question into the geometric one. Then we use recent new developments in the classification of representations together with new algebraic objects which recently appear in non-abelian Hodge theory to study this question. It will take us to the study the deformations of G-Higgs bundles together with deformations of harmonic bundles over X when X is a curve and varies.
This project will allow the researcher to broaden her area of expertise as well as to develop new directions in her research lines. She will complement her knowledge in differential geometry in one of the most prestigious Universities and under the guidance of one of the worldwide leaders in this field.
                            
                                Wissenschaftliches Gebiet (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
                                                
                                            
                                        
                                                                                                
                            CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik angewandte Mathematik mathematische Physik
 - Naturwissenschaften Mathematik reine Mathematik Topologie
 - Naturwissenschaften Mathematik reine Mathematik Geometrie
 - Naturwissenschaften Mathematik reine Mathematik Algebra algebraische Geometrie
 
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
            Programm/Programme
            
              
              
                Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
                
              
            
          
                      Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
- 
                  H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
                                      HAUPTPROGRAMM
                                    
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen - 
                  H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
                                    
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen 
            Thema/Themen
            
              
              
                Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
                
              
            
          
                      
                  Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
            Finanzierungsplan
            
              
              
                Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
                
              
            
          
                      Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF-EF-ST - Standard EF
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
              Aufforderung zur Vorschlagseinreichung
                
                  
                  
                    Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
                    
                  
                
            
                          Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2014
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
OX1 2JD Oxford
Vereinigtes Königreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.