Periodic Reporting for period 1 - Syncrip_2014 (The molecular basis of learning and memory: uncovering the link between neuronal activation and localized translation at the synapse.)
Berichtszeitraum: 2015-09-01 bis 2017-08-31
During learning, specific neuronal connections are strengthened and weakened to create long-term memory. This requires local regulation of the availability of proteins at the synapse, at a large distance from the cell body, in response to neuronal activity. It is generally recognised that such synaptic plasticity can be achieved through the regulation of translation of localized mRNAs at or near synapses, yet the molecular basis by which this process occurs is still largely unknown in any system. This project addressed this deficiency by studying a regulatory component involved in activity dependent synaptic plasticity.
• Why is it important for society?
Activity-dependent plasticity is the biological basis for learning and memory formation. Many neurodegenerative diseases impact upon memory recall and impair new memories from being stored. Advances made to explain the molecular characterization of this process will be beneficial designing treatments to avert these symptoms during the progression of disease.
• What are the overall objectives?
My project was to investigate the molecular mechanisms that regulate localised translation at the synapse in response to neuronal stimulation: a fundamentally important mechanism for regulating synaptic plasticity. We previously identified Syncrip, a conserved RNA binding protein, as an important factor for synaptic function. The aim was to:
1) Investigate how neuronal stimulation regulates Syncrip.
2) Understand how Syncrip controls the localized translation of its target mRNAs at the synapse