Objetivo
The need to understand the behavior of real-life networks made it necessary to work out non-standard graph theoretic tools capable of dealing with a large number of interacting nodes. New mathematical areas emerged, such as graph convergence or parallel algorithms.
The proposal suggests the study of the spectral aspects of these areas. The proposed research is built around two core problems that grew out of and are natural continuations of Harangi's previous work in spectral graph theory at the University of Toronto. One is a spectral version of the so-called soficity problem, a major open question in the area of Benjamini-Schramm convergence. The other is an ambitious conjecture of Harangi and Virag concerning eigenvectors of random regular graphs, stating that these eigenvectors converge to Gaussian wave functions.
In the past few years the Renyi Institute has become the European center for studying graph convergence with several experts of the field working there as well as many talented and motivated graduate students and postdoctoral fellows. Being a member of this research group will allow Harangi to collaborate with researchers from various different mathematical disciplines. The proposed research topic is at the meeting point of these areas. The host's expertise in groups and graph limits will complement Harangi's analytic skills.
The proposed fellowship would give Harangi an excellent oppurtinity to work with some of the top researchers in his field, to acquire the necessary tools to crack the exciting research problems proposed and to make the optimal next step in his career.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias sociales ciencias de la educación didáctica
- ciencias naturales matemáticas matemáticas aplicadas sistemas dinámicos
- ingeniería y tecnología ingeniería eléctrica, ingeniería electrónica, ingeniería de la información ingeniería de la información telecomunicación red de telecomunicaciones
- ciencias naturales matemáticas matemáticas puras matemáticas discretas teoría de grafos
- ciencias naturales matemáticas matemáticas aplicadas estadística y probabilidad
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF-EF-ST - Standard EF
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2014
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
1053 Budapest
Hungría
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.