Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Spectral Theory of Graph Limits

Objectif

The need to understand the behavior of real-life networks made it necessary to work out non-standard graph theoretic tools capable of dealing with a large number of interacting nodes. New mathematical areas emerged, such as graph convergence or parallel algorithms.

The proposal suggests the study of the spectral aspects of these areas. The proposed research is built around two core problems that grew out of and are natural continuations of Harangi's previous work in spectral graph theory at the University of Toronto. One is a spectral version of the so-called soficity problem, a major open question in the area of Benjamini-Schramm convergence. The other is an ambitious conjecture of Harangi and Virag concerning eigenvectors of random regular graphs, stating that these eigenvectors converge to Gaussian wave functions.

In the past few years the Renyi Institute has become the European center for studying graph convergence with several experts of the field working there as well as many talented and motivated graduate students and postdoctoral fellows. Being a member of this research group will allow Harangi to collaborate with researchers from various different mathematical disciplines. The proposed research topic is at the meeting point of these areas. The host's expertise in groups and graph limits will complement Harangi's analytic skills.

The proposed fellowship would give Harangi an excellent oppurtinity to work with some of the top researchers in his field, to acquire the necessary tools to crack the exciting research problems proposed and to make the optimal next step in his career.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF-EF-ST - Standard EF

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2014

Voir tous les projets financés au titre de cet appel

Coordinateur

HUN-REN RENYI ALFRED MATEMATIKAI KUTATOINTEZET
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 134 239,20
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 134 239,20
Mon livret 0 0