Ziel
Many milestone results in mathematics emerge from interactions and transfer of techniques and methods between different areas. I want to attack outstanding problems concerning K-theory, L^2-invariants, manifolds and group theory. The time is ripe to use the exciting and profound progress that has been made during the last years in the individual areas to build new bridges, gain new insights, open the door to new applications, and to trigger new innovative activities worldwide
lasting beyond the proposed funding period.
The starting point are the prominent conjectures of Farrell-Jones on the algebraic K- and L-theory of group rings, of Baum-Connes on the topological K-theory of reduced group C^*-algebras, and of Atiyah on the integrality of L^-Betti numbers.
I intend to analyze and establish the Farrell-Jones Conjecture in other settings such as topological cyclic homology of ``group rings'' over the sphere spectrum, algebraic K-theory of Hecke algebras of totally disconnected groups, the topological K-theory of Fr'echet group algebras, and Waldhausen's A-theory of classifying spaces of groups. This has new and far-reaching consequences for automorphism groups of closed aspherical manifolds, the structure of group rings, and representation theory. Recent proofs by the PI of the Farrell-Jones Conjecture for certain classes of groups require input from homotopy theory, geometric group theory, controlled topology and flows on metric spaces, and will be transferred to the new situations. There is also a program towards a proof of the Atiyah Conjecture based on the Farrell-Jones Conjecture and ring theory. Furthermore, I want to attack open problems such as the approximation of L^2-torsion for towers of finite coverings, and the relation of the first L^2-Betti number, the cost and the rank gradient of a finitely generated group. I see a high potential for new striking applications of the Farrell-Jones Conjecture and L^2-techniques to manifolds and groups.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Topologie
- Naturwissenschaften Mathematik reine Mathematik Algebra
- Naturwissenschaften Mathematik reine Mathematik Geometrie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-ADG - Advanced Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2014-ADG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
53113 Bonn
Deutschland
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.