Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Integrable Random Structures

Ziel

The last few years have seen significant advances in the discovery and development of integrable models in probability, especially in the context of random polymers and the Kardar-Parisi-Zhang (KPZ) equation. Among these are the semi-discrete (O'Connell-Yor) and log-gamma (Seppalainen) random polymer models. Both of these models can be understood via a remarkable connection between the geometric RSK correspondence (a geometric lifting, or de-tropicalization, of the classical RSK correspondence) and the quantum Toda lattice, the eigenfunctions of which are known as Whittaker functions. This connection was discovered by the PI and further developed in collaboration with Corwin, Seppalainen and Zygouras. In particular, we have recently introduced a powerful combinatorial framework which underpins this connection. I have also explored this connection from an integrable systems point of view, revealing a very precise relation between classical, quantum and stochastic integrability in the context of the Toda lattice and some other integrable systems. The main objectives of this proposal are (1) to further develop the combinatorial framework in several directions which, in particular, will yield a wider family of integrable models, (2) to clarify and extend the relation between classical, quantum and stochastic integrability to a wider setting, and (3) to study thermodynamic and KPZ scaling limits of Whittaker functions (and associated measures) and their applications. The proposed research, which lies at the interface of probability, integrable systems, random matrices, statistical physics, automorphic forms, algebraic combinatorics and representation theory, will make novel contributions in all of these areas.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-ADG - Advanced Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2014-ADG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 287 861,18
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 287 861,18

Begünstigte (3)

Mein Booklet 0 0