Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Harmonic Analysis and Differential Equations: New Challenges

Objectif

This project sets forth cutting-edge challenges in the field of Mathematical Physics that will be solved within a common framework by making novel use of classical tools of Harmonic Analysis such as Oscillatory Integrals and Trigonometric Sums, the Cauchy operator, and the so-called Carleman estimates. Three aspects will be covered:
1.Vortex Filament Equation (VFE)
2.Relativistic and Non-relativistic Critical Electromagnetic Hamiltonians
3.Uncertainty Principles (UPs) and Applications
The interaction of vortex filaments is considered a key issue in order to understand turbulence which is seen by many as the most relevant unsolved problem of classical physics. VFE first appeared as an approximation of the dynamics of isolated vortex filaments. I want to understand what happens when at time zero the filament is a regular polygon. Preliminary theoretical arguments together with some numerical experiments suggest that the different corners behave like different vortex filaments that interact with each other in such a way that the dynamics seem chaotic. I will prove the so-called Frisch-Parisi conjecture, showing that behind this chaotic behavior there is an underlying algebraic structure that controls the dynamics.
The Dirac equation, despite being one of the basic equations of Mathematical Physics, is very poorly understood from an analytical point of view. I will use the classical Cauchy operator in a modern way to explain some key Hamiltonian systems such as the MIT bag model for quark confinement.
UPs are at the heart of different fields like Quantum Mechanics, Harmonic Analysis, and Information Theory. We want to use a new approach to analyze modern versions of UPs that are not well understood. In order to do this, I will look at the problem from the point of view of partial differential equations making novel use of the Carleman estimates. This analysis will also be extended to the discrete setting where even classical UPs such the one by Hardy are not solved yet

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-ADG - Advanced Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2014-ADG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 903 352,60
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 672 103,00

Bénéficiaires (2)

Mon livret 0 0