Descrizione del progetto
Espansione dell’hardware quantistico per sfruttare appieno il potenziale della tecnologia quantistica
Le reti fotoniche quantistiche scalabili hanno aperto nuove possibilità di comunicazione, rilevamento e calcolo. Queste reti si basano su blocchi quantistici di luce-materia ad alte prestazioni, che sono stati sviluppati e continuamente migliorati. Il progetto SCALE, finanziato dall’UE, è dedicato allo studio e allo sviluppo di hardware fotonico quantistico per applicazioni trasformative a lungo termine. Il progetto si concentrerà sulla realizzazione di reti quantistiche su larga scala che coinvolgano numerosi bit quantistici di luce e materia. Le reti saranno create utilizzando operazioni ottiche lineari, misure basate su fotorilevatori e una memoria quantistica fotonica per l’archiviazione. Facendo progredire la fotonica quantistica, il progetto mira ad affermarla come tecnologia leader per l’elaborazione scalabile delle informazioni quantistiche.
Obiettivo
It is an outstanding challenge in quantum physics of today to scale small proof-of-concept experimental demonstrations into larger quantum networks. In the last decade, solid-state photonic systems have matured significantly, and an ambitious research project on such scaling seems viable. With the present proposal we intend to take up this challenge and exploit single quantum dots in photonic-crystal nanostructures as a deterministic photon-emitter interface for scalable quantum architectures.
The project objectives are threefold. We will explore: 1) Deterministic single-photon sources for quantum simulations, 2) A giant photon nonlinearity for quantum-information processing, 3) The deterministic interfacing of multiple quantum dots.
In 1) we will exploit our recently developed deterministic single-photon source to produce a spatially multiplexed array of single photons (prospectively of 10 photons or more). This source will be used for quantum simulations. Area 2) exploits a single quantum dot in a photonic-crystal waveguide as a giant nonlinearity. The quantum dot will be operated either as a passive nonlinear scatterer or actively controlled. The nonlinearity will enable constructing a deterministic CNOT gate for photons or a single-photon transistor. Finally, 3) concerns the coupling of two or more quantum dots by an extended dipole-dipole interaction that is mediated by the photonic-crystal waveguide. The fundamental limits for the size and complexity of such a quantum photonic network will be explored.
The present project focus on overcoming the fundamental obstacles that photonic quantum-information processing applications have been suffering from, i.e. probabilistic single-photon emission and weak nonlinearities. The successful accomplishment of the project could elevate quantum photonics to a frontrunner technology for scalable quantum-information processing.
Campo scientifico
- natural sciencesphysical sciencesquantum physics
- natural sciencesphysical sciencesatomic physics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwaresupercomputers
- natural sciencesphysical sciencesopticsfibre optics
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-ADG - Advanced GrantIstituzione ospitante
1165 Kobenhavn
Danimarca