Description du projet
Le rôle du phytoplancton dans les cycles géochimiques: de la cellule unique aux populations
Les cycles biogéochimiques de l’océan par lesquels les nutriments et d’autres éléments circulent entre la biosphère (monde vivant) et la géosphère (monde non-vivant), font partie intégrante de la vie et de l’évolution du climat. Le phytoplancton limite l’accumulation du CO2 dans l’atmosphère en le transférant dans l’océan. Le projet SEACELLS, financé par le Conseil européen de la recherche, élucidera les mécanismes de transport membranaire, de régulation cellulaire et d’autres processus chez le phytoplancton, de la cellule unique au niveau de la population. L’équipe intégrera la biophysique de la cellule unique, l’imagerie et la biologie moléculaire de pointe aux études in situ des populations naturelles de phytoplancton océanique afin de gagner une meilleure compréhension de la variabilité de la cellule unique et des réponses des populations à l’évolution des conditions océaniques.
Objectif
SEACELLS addresses fundamental questions in phytoplankton biology from cellular to population scales. Our recent studies of phytoplankton, primitive photosynthetic marine protists that play important roles in ocean biogeochemical cycles, are providing exciting new information on the roles and evolution of membrane transport, cell signalling and metabolic regulation. The research builds on a number of recent findings, including the discovery of cell membrane properties that were thought to be typical of animal cells but now must be considered to be of much more ancient origin. The proposed 5-year programme brings together single cell biophysics, imaging and state of the art molecular biology with in situ studies of natural oceanic phytoplankton populations, focussing principally on two significant groups, the diatoms and coccolithophores. A major aim is to gain critical mechanistic understanding of membrane transport, cellular regulation and key physiological processes at the single cell level along with information on the microenvironment that surrounds cells. This will be used in conjunction with modelling studies to determine how phytoplankton cells regulate their immediate environment and how this in turn interacts with metabolic activity. In order to understand how the physiological properties of single cells in the laboratory translate to behaviour of natural populations we will examine cell physiological properties in natural populations. Knowledge of cell- to-cell variability will provide insights into the plasticity of populations and their responses to changing ocean conditions. Underpinning this is the transfer of single cell technology developed in the laboratory to ship-board platforms. SEACELLS presents a discipline-spanning approach, providing opportunities for cross-fertilization of knowledge and ideas from molecular biology through cell biophysics to in situ oceanography with wide reaching outcomes.
Champ scientifique
- natural sciencesbiological sciencescell biologycell signaling
- natural sciencesbiological sciencesmicrobiologyphycology
- natural sciencesbiological sciencescell biologycell metabolism
- natural sciencesearth and related environmental sciencesgeochemistrybiogeochemistry
- natural sciencesbiological sciencesmolecular biology
Programme(s)
Thème(s)
Régime de financement
ERC-ADG - Advanced GrantInstitution d’accueil
PL1 2PB Plymouth
Royaume-Uni
L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.