Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Algebraic and Kähler geometry

Objective

The purpose of this project is to study basic questions in algebraic and Kähler geometry. It is well known that the structure of projective or Kähler manifolds is governed by positivity or negativity properties of the curvature tensor. However, many fundamental problems are still wide open. Since the mid 1980's, I have developed a large number of key concepts and results that have led to important progress in transcendental algebraic geometry. Let me mention the discovery of holomorphic Morse inequalities, systematic applications of L² estimates with singular hermitian metrics, and a much improved understanding of Monge-Ampère equations and of singularities of plurisuharmonic functions. My first goal will be to investigate the Green-Griffiths-Lang conjecture asserting that an entire curve drawn in a variety of general type is algebraically degenerate. The subject is intimately related to important questions concerning Diophantine equations, especially higher dimensional generalizations of Faltings' theorem - the so-called Vojta program. One can rely here on a breakthrough I made in 2010, showing that all such entire curves must satisfy algebraic differential equations. A second closely related area of research of this project is the analysis of the structure of projective or compact Kähler manifolds. It can be seen as a generalization of the classification theory of surfaces by Kodaira, and of the more recent results for dimension 3 (Kawamata, Kollár, Mori, Shokurov, ...) to other dimensions. My plan is to combine powerful recent results obtained on the duality of positive cohomology cones with an analysis of the instability of the tangent bundle, i.e. of the Harder-Narasimhan filtration. On these ground-breaking questions, I intend to go much further and to enhance my national and international collaborations. These subjects already attract many young researchers and postdocs throughout the world, and the grant could be used to create even stronger interactions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-ADG

See all projects funded under this call

Host institution

UNIVERSITE GRENOBLE ALPES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 809 345,00
Address
621 AVENUE CENTRALE
38058 GRENOBLE
France

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 809 345,01

Beneficiaries (1)

My booklet 0 0