Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Practically Relevant Theory of Deep Learning

Objective

One of the most significant recent developments in applied machine learning has been the resurgence of ``deep learning'', usually in the form of artificial neural networks. The empirical success of deep learning is stunning, and deep learning based systems have already led to breakthroughs in computer vision and speech recognition. In contrast, from the theoretical point of view, by and large, we do not understand why deep learning is at all possible, since most state of
the art theoretical results show that deep learning is computationally hard.

Bridging this gap is a great challenge since it involves proficiency in several theoretic fields (algorithms, complexity, and statistics) and at the same time requires a good understanding of real world practical problems and the ability to conduct applied research. We believe that a good theory must lead to better practical algorithms. It should also broaden the applicability of learning in general, and deep learning in particular, to new domains. Such a practically relevant theory may also lead to a fundamental paradigm shift in the way we currently analyze the complexity of algorithms.

Previous works by the PI and his colleagues and students have provided novel ways to analyze the computational complexity of learning algorithms and understand the tradeoffs between data and computational time. In this proposal, in order to bridge the gap between theory and practice, I suggest a departure from worst-case analyses and the development of a more optimistic, data dependent, theory with ``grey'' components. Success will lead to a breakthrough in our understanding of learning at large with significant potential for impact on the field of machine learning and its applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-STG

See all projects funded under this call

Host institution

THE HEBREW UNIVERSITY OF JERUSALEM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 342 500,00
Address
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 342 500,00

Beneficiaries (1)

My booklet 0 0