Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Practically Relevant Theory of Deep Learning

Cel

One of the most significant recent developments in applied machine learning has been the resurgence of ``deep learning'', usually in the form of artificial neural networks. The empirical success of deep learning is stunning, and deep learning based systems have already led to breakthroughs in computer vision and speech recognition. In contrast, from the theoretical point of view, by and large, we do not understand why deep learning is at all possible, since most state of
the art theoretical results show that deep learning is computationally hard.

Bridging this gap is a great challenge since it involves proficiency in several theoretic fields (algorithms, complexity, and statistics) and at the same time requires a good understanding of real world practical problems and the ability to conduct applied research. We believe that a good theory must lead to better practical algorithms. It should also broaden the applicability of learning in general, and deep learning in particular, to new domains. Such a practically relevant theory may also lead to a fundamental paradigm shift in the way we currently analyze the complexity of algorithms.

Previous works by the PI and his colleagues and students have provided novel ways to analyze the computational complexity of learning algorithms and understand the tradeoffs between data and computational time. In this proposal, in order to bridge the gap between theory and practice, I suggest a departure from worst-case analyses and the development of a more optimistic, data dependent, theory with ``grey'' components. Success will lead to a breakthrough in our understanding of learning at large with significant potential for impact on the field of machine learning and its applications.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-STG - Starting Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2015-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

THE HEBREW UNIVERSITY OF JERUSALEM
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 342 500,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 342 500,00

Beneficjenci (1)

Moja broszura 0 0