Objetivo
This research project is organized along three seemingly unrelated directions:
(1) Mathematical Liouville gravity deals with the geometry of large random planar maps. Historically, conformal invariance was a key ingredient in the construction of Liouville gravity in the physics literature. Conformal invariance has been restored recently with an attempt of understanding large random combinatorial planar maps once conformally embedded in the plane. The geometry induced by these embeddings is conjecturally described by the exponential of a highly oscillating distribution, the Gaussian Free Field. This conjecture is part of a broader program aimed at rigorously understanding the celebrated KPZ relation. The first major goal of my project is to make significant progress towards the completion of this program. I will combine for this several tools such as Liouville Brownian motion, circle packings, QLE processes and Bouchaud trap models.
(2) Euclidean statistical physics is closely related to area (1) through the above KPZ relation. I plan to push further the analysis of critical statistical physics models successfully initiated by the works of Schramm and Smirnov. I will focus in particular on dynamics at and near critical points with a special emphasis on the so-called noise sensitivity of these systems.
(3) 3d turbulence. A more tractable ambition than solving Navier-Stokes equation is to construct explicit stochastic vector fields which combine key features of experimentally observed velocity fields. I will make the mathematical framework precise by identifying four axioms that need to be satisfied. It has been observed recently that the exponential of a certain log-correlated field, as in (1), could be used to create such a realistic velocity field. I plan to construct and analyse this challenging object by relying on techniques from (1) and (2). This would be the first genuine stochastic model of turbulent flow in the spirit of what Kolmogorov was aiming at.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras geometría
- ciencias naturales matemáticas matemáticas puras análisis matemático ecuaciones diferenciales ecuaciones diferenciales parciales
- ciencias naturales ciencias físicas física teórica
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-STG - Starting Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2015-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
69622 Villeurbanne Cedex
Francia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.