Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

From Liouville to Kolmogorov: 2d quantum gravity, noise sensitivity and turbulent flows

Ziel

This research project is organized along three seemingly unrelated directions:

(1) Mathematical Liouville gravity deals with the geometry of large random planar maps. Historically, conformal invariance was a key ingredient in the construction of Liouville gravity in the physics literature. Conformal invariance has been restored recently with an attempt of understanding large random combinatorial planar maps once conformally embedded in the plane. The geometry induced by these embeddings is conjecturally described by the exponential of a highly oscillating distribution, the Gaussian Free Field. This conjecture is part of a broader program aimed at rigorously understanding the celebrated KPZ relation. The first major goal of my project is to make significant progress towards the completion of this program. I will combine for this several tools such as Liouville Brownian motion, circle packings, QLE processes and Bouchaud trap models.

(2) Euclidean statistical physics is closely related to area (1) through the above KPZ relation. I plan to push further the analysis of critical statistical physics models successfully initiated by the works of Schramm and Smirnov. I will focus in particular on dynamics at and near critical points with a special emphasis on the so-called noise sensitivity of these systems.

(3) 3d turbulence. A more tractable ambition than solving Navier-Stokes equation is to construct explicit stochastic vector fields which combine key features of experimentally observed velocity fields. I will make the mathematical framework precise by identifying four axioms that need to be satisfied. It has been observed recently that the exponential of a certain log-correlated field, as in (1), could be used to create such a realistic velocity field. I plan to construct and analyse this challenging object by relying on techniques from (1) and (2). This would be the first genuine stochastic model of turbulent flow in the spirit of what Kolmogorov was aiming at.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-STG - Starting Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2015-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

UNIVERSITE LYON 1 CLAUDE BERNARD
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 935 000,00
Adresse
BOULEVARD DU 11 NOVEMBRE 1918 NUM43
69622 Villeurbanne Cedex
Frankreich

Auf der Karte ansehen

Region
Auvergne-Rhône-Alpes Rhône-Alpes Rhône
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 935 000,00

Begünstigte (1)

Mein Booklet 0 0