Objetivo
Algebraic geometry deals with algebraic varieties, that is, systems of polynomial equations and their geometric interpretation. Its ultimate goal is the classification of all algebraic varieties. For a detailed understanding, one has to construct their moduli spaces, and eventually study them over the integers, that is, in the arithmetic situation. So far, the best results are available for curves and Abelian varieties.
To go beyond the aforementioned classes, I want to study arithmetic moduli spaces of the only other classes that are currently within reach, namely, K3 surfaces, Enriques surfaces, and Hyperkähler varieties. I expect this study to lead to finer invariants, to new stratifications of moduli spaces, and to open new research areas in arithmetic algebraic geometry.
Next, I propose a systematic study of supersingular varieties, which are the most mysterious class of varieties in positive characteristic. Again, a good theory is available only for Abelian varieties, but recently, I established a general framework via deformations controlled by formal group laws. I expect to extend this also to constructions in complex geometry, such as twistor space, which would link so far completely unrelated fields of research.
I want to accompany these projects by developing a general theory of period maps and period domains for F-crystals, with an emphasis on the supersingular ones to start with. This will be the framework for Torelli theorems that translate the geometry and moduli of K3 surfaces, Enriques surfaces, and Hyperkähler varieties into explicit linear algebra problems, thereby establishing new tools in algebraic geometry.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.
- ciencias naturales matemáticas matemáticas puras álgebra álgebra lineal
- ciencias naturales matemáticas matemáticas puras aritmética
- ciencias naturales matemáticas matemáticas puras geometría
- ciencias naturales matemáticas matemáticas puras álgebra geometría algebraica
- ciencias sociales derecho
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-COG - Consolidator Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2015-CoG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
80333 Muenchen
Alemania
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.