Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Scalable online machine learning for predictive analytics and real-time interactive visualization

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

Final demonstrator (si apre in una nuova finestra)

Final demonstrator together with the final report including the evaluation of the whole technology developed during the project in the Hot Strip Mill process in the ArcelorMittal steelmaking factory.

Hybrid computation tested system (si apre in una nuova finestra)

Tested system implementation of hybrid computation for Apache Flink

Second prototype (V2) (si apre in una nuova finestra)

Second version of the above, for the second prototype

Optimizer Prototype (si apre in una nuova finestra)

Prototype of a domain specific optimizer for the declarative language and Apache Flink

Scalable online machine learning algorithms for streaming (si apre in una nuova finestra)

This deliverable will introduce Version 1 of SOLMA that encompasses new scalable online machine learning algorithms.

Optimizer finished implementation (si apre in una nuova finestra)

Finished implementation of a domain specific optimizer for the declarative language and Apache Flink.

Updateable-state management prototype implementation (si apre in una nuova finestra)

Implemented system for updateable state for Apache Flink

Third prototype (V3) (si apre in una nuova finestra)

Third version of the above, for the third prototype

Software implementation and integration with Apache Flink (si apre in una nuova finestra)

This deliverable includes the implementation of the 3 layers of the proposed technical solution. Data Collector, and Incremental Analytics Engine layers will be implemented within the core of Apache Flink technology. The Visualization layer will be implemented as client-side library

Basic scalable streaming algorithms (si apre in una nuova finestra)

This deliverable is in the form of software (joint with publications) will present Version 0 of the library covering a set of basic scalable streaming algorithms produced in Task 4.2.

Scalable drift and anomaly detection (si apre in una nuova finestra)

This deliverable will result in Version 2 of SOLMA covering new scalable drift and anomaly detection algorithms.

Hybrid computation prototype implementation (si apre in una nuova finestra)

Prototypical implementation of hybrid computation for Apache Flink covering basic workflows

First prototype (V1) (si apre in una nuova finestra)

The first version of the evolving prototype in the validation scenario. An associated evolving document will provide, for each prototype execution, the objectives definition, KPIs involved and their evaluation after the prototype execution phase.

Declarative language tested implementation (si apre in una nuova finestra)

Tested implementation of a declarative language for (online) machine learning

Declarative language finished implementation (si apre in una nuova finestra)

Finished implementation of a declarative language for (online) machine learning

Scalable Online algorithms in Flink (si apre in una nuova finestra)

This deliverable will release the final implementation in Flink of the streaming algorithms produced earlier through D4.2-D4.4.

Declarative language prototype implementation (si apre in una nuova finestra)

Implementation of a basic declarative language prototype

Report on scientific dissemination activities – V1 (si apre in una nuova finestra)

Details for scientific dissemination activities and materials along with the time line and success indicators. It includes a record of activities related to scientific dissemination that have been undertaken during the first half of the project, and those planned for the second period.

Scenario details and objectives description (si apre in una nuova finestra)

This document details the Hot Strip Mill process in terms of sensor data characteristics and data workflow. It also describes the scenario objectives from the end-user perspective.

Report on community engagement and technology transfer activities – V2 (si apre in una nuova finestra)

The final version of the deliverable compiles a record of all the activities related to community engagement and technology transfer developed in the course of the project

Scenario development and KPI definition for the PROTEUS solution (si apre in una nuova finestra)

A report that presents the review of benchmarks, the typical scenarios used to define the parameters of the PROTEUS solution and requirements, benchmarks and KPIs

PROTEUS evaluation and impact assessment (si apre in una nuova finestra)

A report which details the gains associated with the PROTEUS solution, using quantitative information, and which identifies areas for further improvement and investment

Guidelines for interacting and visualization information in Big Data environments (si apre in una nuova finestra)

This document presents the results of the research in new ways of presenting and working with large amount of data and stream data

Visualization requirements for massive online machine learning strategies (si apre in una nuova finestra)

This deliverable defines functional and non-functional requirements for the visualization system regarding online machine learning strategies

Report on project communication and engagement activities – V2 (si apre in una nuova finestra)

The final report of communication and engagement activities, compiling a list of all activities developed for communication with other relevant initiatives in the course of the project.

Report on scientific dissemination activities – V2 [ (si apre in una nuova finestra)

Final report of scientific dissemination activities. The final version compiles a record of all activities related to scientific dissemination developed in the course of the project.

Catalogue of scientific and technical requirements (si apre in una nuova finestra)

This document describes the catalogue of scientific and technical challenges/requirements derived from the industrial scenario needs.

Report on community engagement and technology transfer activities – V1 (si apre in una nuova finestra)

Details for the community engagement and technology transfer strategy for the project. The intermediate report includes a record of activities related to community creation and engagement, and technology transfer developed in the course of the first half of the project, and those planned for the second half

Declarative language syntax definition (si apre in una nuova finestra)

Syntax definition for a declarative language based on machine learning requirements

Architecture design for supporting incremental visual methods (si apre in una nuova finestra)

This deliverable defines the technical design of the 3-layer based architecture for implementing the visualization system

Report on project communication and engagement activities – V1 (si apre in una nuova finestra)

Details for communication and engagement activities and materials along with the time line and success indicators. It includes a record of communication activities that have been undertaken during the first half of the project, and those planned for the second period.

Investigative overview of targeted techniques and algorithms (si apre in una nuova finestra)

The state of the art of scalable streaming algorithms for distributed environments, non-scalable streaming algorithms, and selected prominent non-streaming and non-scalable algorithms that can be approximated by an online version.

PROTEUS factsheet leaflet (si apre in una nuova finestra)

The PROTEUS factsheet will be an early dissemination leaflet for dissmeination and communication purposes, including the most relevant information of the project in a nutshell, and will be available from the very begining as an initial public brochure.

PROTEUS project website (si apre in una nuova finestra)

PROTEUS project public website, to be active and regularly updated during the whole project.

Pubblicazioni

Efficient Migration of Very Large Distributed State for Scalable Streaming Processing

Autori: Bonaventura Del Monte
Pubblicato in: Proceedings of the VLDB 2017 PhD Workshop, Numero 28 August 2017, 2017
Editore: N/A

Non-dominated solutions visualization in multiobjective optimization: application to assembly line balancing

Autori: Krzysztof Trawinski, Manuel Chica, David P. Pancho, Sergio Damas, and Oscar Cordón
Pubblicato in: Proceeding of the MIC and MAEB 2017 Conferences, Numero June 2017, 2017, Pagina/e 963-972, ISBN 978-84-697-4275-1
Editore: Universitat Pompeu Fabra

Scotty: Efficient Window Aggregation for Out-of-Order Stream Processing (si apre in una nuova finestra)

Autori: Jonas Traub, Philipp Marian Grulich, Alejandro Rodriguez Cuellar, Sebastian Bress, Asterios Katsifodimos, Tilmann Rabl, Volker Markl
Pubblicato in: 2018 IEEE 34th International Conference on Data Engineering (ICDE), 2018, Pagina/e 1300-1303, ISBN 978-1-5386-5520-7
Editore: IEEE
DOI: 10.1109/ICDE.2018.00135

Scalable online learning for flink - SOLMA library (si apre in una nuova finestra)

Autori: W. Jamil, N-C. Duong, W. Wang, C. Mansouri, S. Mohamad, A. Bouchachia
Pubblicato in: Proceedings of the 12th European Conference on Software Architecture Companion Proceedings - ECSA '18, 2018, Pagina/e 1-4, ISBN 9781-450364836
Editore: ACM Press
DOI: 10.1145/3241403.3241438

Benchmarking Distributed Stream Data Processing Systems (si apre in una nuova finestra)

Autori: Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri Heiskanen, Volker Markl
Pubblicato in: 2018 IEEE 34th International Conference on Data Engineering (ICDE), 2018, Pagina/e 1507-1518, ISBN 978-1-5386-5520-7
Editore: IEEE
DOI: 10.1109/ICDE.2018.00169

Aggregation Algorithm Vs. Average for Time Series Prediction

Autori: Bouchachia, Abdelhamid; Kalnishkan, Y; Jamil, W.
Pubblicato in: ECML/PKDD 2016 Workshop on Large-scale Learning from Data Streams in Evolving Environments (STREAMEVOLV-2016), Numero 1, 2016, Pagina/e 69-82
Editore: N/A

Bridging the gap: towards optimization across linear and relational algebra (si apre in una nuova finestra)

Autori: Andreas Kunft, Alexander Alexandrov, Asterios Katsifodimos, Volker Markl
Pubblicato in: BeyondMR '16 Proceedings of the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, Numero BeyondMR '16 26-06-2016, 2016, ISBN 978-1-4503-4311-4
Editore: ACM
DOI: 10.1145/2926534.2926540

Emma in Action: Declarative Dataflows for Scalable Data Analysis (si apre in una nuova finestra)

Autori: Alexander Alexandrov , Andreas Salzmann , Georgi Krastev , Asterios Katsifodimos , Volker Markl
Pubblicato in: ACM SIGMOD '16 Proceedings of the 2016 SIGMOD International Conference on Management of Data, Numero Sigmod16, 26-06-2016, 2016, Pagina/e 2073-2076, ISBN 978-1-4503-3531-7
Editore: ACM
DOI: 10.1145/2882903.2899396

Implicit Parallelism through Deep Language Embedding (si apre in una nuova finestra)

Autori: Alexander Alexandrov, Asterios Katsifodimos, Georgi Krastev, Volker Markl
Pubblicato in: ACM SIGMOD Record, Numero Volume 45, Number 1, March 2016, 2016, Pagina/e 51-58, ISSN 0163-5808
Editore: ACM
DOI: 10.1145/2949741.2949754

An Incremental Approach for Real-Time Big Data Visual Analytics (si apre in una nuova finestra)

Autori: Ignacio Garcia, Ruben Casado, Abdelhamid Bouchachia
Pubblicato in: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), 2016, Pagina/e 177-182, ISBN 978-1-5090-3946-3
Editore: IEEE
DOI: 10.1109/W-FiCloud.2016.46

A non-parametric hierarchical clustering model (si apre in una nuova finestra)

Autori: Saad Mohamad, Abdelhamid Bouchachia, Moamar Sayed-Mouchaweh
Pubblicato in: 2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), Numero STREAMEVOLV-2016, 23 September 2016, 2015, Pagina/e 1-7, ISBN 978-1-4673-6698-4
Editore: IEEE
DOI: 10.1109/EAIS.2015.7368803

Active Learning for Data Streams under Concept Drift and concept evolution

Autori: Saad Mohamad, Moamar Sayed-Mouchaweh and Abdelhamid Bouchachia
Pubblicato in: ECML/PKDD 2016 Workshop on Large-scale Learning from Data Streams in Evolving Environments, Numero STREAMEVOLV-2016, 23 September 2016, 2016, Pagina/e 51-68
Editore: -

LIBIRWLS: A parallel IRWLS library for full and budgeted SVMs (si apre in una nuova finestra)

Autori: Roberto Díaz-Morales, Ángel Navia-Vázquez
Pubblicato in: Knowledge-Based Systems, Numero 136, 2017, Pagina/e 183-186, ISSN 0950-7051
Editore: Elsevier BV
DOI: 10.1016/j.knosys.2017.09.007

Batch-based active learning: Application to social media data for crisis management (si apre in una nuova finestra)

Autori: Daniela Pohl, Abdelhamid Bouchachia, Hermann Hellwagner
Pubblicato in: Expert Systems with Applications, Numero 93, 2018, Pagina/e 232-244, ISSN 0957-4174
Editore: Pergamon Press Ltd.
DOI: 10.1016/j.eswa.2017.10.026

Active learning for classifying data streams with unknown number of classes (si apre in una nuova finestra)

Autori: Saad Mohamad, Moamar Sayed-Mouchaweh, Abdelhamid Bouchachia
Pubblicato in: Neural Networks, Numero 98, 2018, Pagina/e 1-15, ISSN 0893-6080
Editore: Pergamon Press Ltd.
DOI: 10.1016/j.neunet.2017.10.004

MSAFIS: an evolving fuzzy inference system (si apre in una nuova finestra)

Autori: José de Jesús Rubio, Abdelhamid Bouchachia
Pubblicato in: Soft Computing, Numero 21/9, 2017, Pagina/e 2357-2366, ISSN 1432-7643
Editore: Springer Verlag
DOI: 10.1007/s00500-015-1946-4

Blockjoin (si apre in una nuova finestra)

Autori: Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Tilmann Rabl, Volker Markl
Pubblicato in: Proceedings of the VLDB Endowment, Numero 10/13, 2017, Pagina/e 2061-2072, ISSN 2150-8097
Editore: ACM
DOI: 10.14778/3151106.3151110

Improving the efficiency of IRWLS SVMs using parallel Cholesky factorization (si apre in una nuova finestra)

Autori: Díaz Morales, R. , & Navia Vázquez, Á
Pubblicato in: Pattern Recognition Letters, Numero Volume 84, 1 December 2016, 2016, Pagina/e 91-98, ISSN 0167-8655
Editore: Elsevier BV
DOI: 10.1016/j.patrec.2016.08.015

A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams (si apre in una nuova finestra)

Autori: Mohamad, S., Bouchachia, A. and Sayed-Mouchaweh, M.
Pubblicato in: IEEE Transactions on Neural Networks and Learning Systems, Numero N/A (early access), 2016, Pagina/e 1-13, ISSN 2162-2388
Editore: IEEE
DOI: 10.1109/TNNLS.2016.2614393

Model Selection in Online Learning for Times Series Forecasting (si apre in una nuova finestra)

Autori: Waqas Jamil, Abdelhamid Bouchachia
Pubblicato in: Advances in Computational Intelligence Systems - Contributions Presented at the 18th UK Workshop on Computational Intelligence, September 5-7, 2018, Nottingham, UK, Numero 840, 2019, Pagina/e 83-95, ISBN 978-3-319-97981-6
Editore: Springer International Publishing
DOI: 10.1007/978-3-319-97982-3_7

Fuzzy Classifiers (si apre in una nuova finestra)

Autori: Abdelhamid Bouchachia
Pubblicato in: Handbook on Computational Intelligence, Numero May 2016, 2016, Pagina/e 185-207, ISBN 978-981-4675-00-0
Editore: WORLD SCIENTIFIC
DOI: 10.1142/9789814675017_0005

Advances in Computational Intelligence Systems - Contributions Presented at the 18th UK Workshop on Computational Intelligence, September 5-7, 2018, Nottingham, UK (si apre in una nuova finestra)

Autori: Ahmad Lotfi, Hamid Bouchachia, Alexander Gegov, Caroline Langensiepen, Martin McGinnity
Pubblicato in: Advances in Intelligent Systems and Computing, 2019, ISBN 978-3-319-97982-3
Editore: Springer
DOI: 10.1007/978-3-319-97982-3

ECML/PKDD 2017 Workshop on IoT Large Scale Learning from Data Streams

Autori: M.S. Mouchaweh, A. Bifet, A. Bouchachia, J. Gama, R. Ribeiro
Pubblicato in: 2017
Editore: CEUR-WS.org

Apache Flink: Stream and Batch Processing in a Single Engine

Autori: Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl, Kostas Tzoumas
Pubblicato in: Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, Numero December 2015 Vol. 38 No. 4, Numero on Next-Generation Stream Processing Systems, 2015, Pagina/e 28-38
Editore: IEEE

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile

Il mio fascicolo 0 0