Obiettivo
Road accidents continue to be a major public safety concern. Human error is the main cause of accidents. Intelligent driver systems that can monitor the driver’s state and behaviour show promise for our collective safety. VI-DAS will progress the design of next-gen 720° connected ADAS (scene analysis, driver status). Advances in sensors, data fusion, machine learning and user feedback provide the capability to better understand driver, vehicle and scene context, facilitating a significant step along the road towards truly semi-autonomous vehicles. On this path there is a need to design vehicle automation that can gracefully hand-over and back to the driver. VI-DAS advances in computer vision and machine learning will introduce non-invasive, vision-based sensing capabilities to vehicles and enable contextual driver behaviour modelling. The technologies will be based on inexpensive and ubiquitous sensors, primarily cameras. Predictions on outcomes in a scene will be created to determine the best reaction to feed to a personalised HMI component that proposes optimal behaviour for safety, efficiency and comfort. VI-DAS will employ a cloud platform to improve ADAS sensor and algorithm design and to store and analyse data at a large scale, thus enabling the exploitation of vehicle connectivity and cooperative systems. VI-DAS will address human error analysis by the study of real accidents in order to understand patterns and consequences as an input to the technologies. VI-DAS will also address legal, liability and emerging ethical aspects because with such technology comes new risks, and justifiable public concern. The insurance industry will be key in the adoption of next generation ADAS and Autonomous Vehicles and a stakeholder in reaching L3. VI-DAS is positioned ideally at the point in the automotive value chain where Europe is both dominant and in which value can be added. The project will contribute to reducing accidents, economic growth and continued innovation.
Campo scientifico
- engineering and technologymechanical engineeringvehicle engineeringautomotive engineeringautonomous vehicles
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- natural sciencescomputer and information sciencesartificial intelligencecomputer vision
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
- natural sciencescomputer and information sciencesdata sciencedata processing
Programma(i)
Invito a presentare proposte
Vedi altri progetti per questo bandoBando secondario
H2020-MG-2015_TwoStages
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
20009 Donostia San Sebastian
Spagna
Mostra sulla mappa
Partecipanti (17)
33400 TALENCE
Mostra sulla mappa
L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.
75015 PARIS 15
Mostra sulla mappa
9 Dublin
Mostra sulla mappa
63073 Offenbach/Main
Mostra sulla mappa
D15 HN66 DUBLIN
Mostra sulla mappa
77454 Marne-La-Vallee
Mostra sulla mappa
85579 Neubiberg
Mostra sulla mappa
92130 Issy Les Moulineaux
Mostra sulla mappa
L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.
76131 Karlsruhe
Mostra sulla mappa
5708 JZ Helmond
Mostra sulla mappa
Partecipazione conclusa
1011 AC Amsterdam
Mostra sulla mappa
5612 AE Eindhoven
Mostra sulla mappa
- Limerick
Mostra sulla mappa
74321 Bietigheim Bissingen
Mostra sulla mappa
EC3V 0BV LONDON
Mostra sulla mappa
5656 AE Eindhoven
Mostra sulla mappa
V42V384 Limerick
Mostra sulla mappa
L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.