Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Orthogonal Polynomials in spectral theory

Objetivo

Two great developments took place in the field of Orthogonal Polynomials (OP) in the last years. The first one based on the Riemann-Hilbert approach developed by the Courant group Deift,... It is well established now in the EU community thanks to Kriecherb auer, Kuijlaars, Van Assche... However it is opposite what concerns the second development: the sum rule method presented in [Killip, Simon, Ann. of Math., 2003]. Our main objective is to develop a general theory for OP beyond the Szego-class based on the sum rule approach; to apply the results in Inverse Scattering, Integrable Systems, Numerical Analysis.

The project should overcome the mentioned EU lag to a great extent and encourage young mathematicians to do research in this promising topic. Another objective deals with a longstanding problem on limit periodicity of Jacobi matrices associated with measures on Julia sets. Ruelle operators and related concepts in OP form a rather open field of investigation. New technical and structural ideas might lead to astonishing developments. The applicant has an experience of a very fruitful collaboration with Prof. Peherstorfer (scientist in charge); their joint results are among the best in the field. His joint work with Volberg (MSU) on inverse scattering, with Bellissard, Geronimo on OP associated with iterations form an essential background for a successful realization of the project.

To this end the Linz University is most likely one of the best places: the project has several different components and at al l of them Peherstorfer is a highly recognized expert. This, as well as the presence of strong groups of Functional and Numerical Analysis at the University produces an extra ordinary opportunity for the further scientific grow of the applicant. Realization of the project will reinforce also the scientific excellence of the community via the knowledge transfer, e.g. the applicant will deliver the newest powerful methods of Harmonic Analysis elaborated at MSU.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP6-2002-MOBILITY-7
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

IIF - Marie Curie actions-Incoming International Fellowships

Coordinador

UNIVERSITAET LINZ
Aportación de la UE
Sin datos
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0