Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Orthogonal Polynomials in spectral theory

Ziel

Two great developments took place in the field of Orthogonal Polynomials (OP) in the last years. The first one based on the Riemann-Hilbert approach developed by the Courant group Deift,... It is well established now in the EU community thanks to Kriecherb auer, Kuijlaars, Van Assche... However it is opposite what concerns the second development: the sum rule method presented in [Killip, Simon, Ann. of Math., 2003]. Our main objective is to develop a general theory for OP beyond the Szego-class based on the sum rule approach; to apply the results in Inverse Scattering, Integrable Systems, Numerical Analysis.

The project should overcome the mentioned EU lag to a great extent and encourage young mathematicians to do research in this promising topic. Another objective deals with a longstanding problem on limit periodicity of Jacobi matrices associated with measures on Julia sets. Ruelle operators and related concepts in OP form a rather open field of investigation. New technical and structural ideas might lead to astonishing developments. The applicant has an experience of a very fruitful collaboration with Prof. Peherstorfer (scientist in charge); their joint results are among the best in the field. His joint work with Volberg (MSU) on inverse scattering, with Bellissard, Geronimo on OP associated with iterations form an essential background for a successful realization of the project.

To this end the Linz University is most likely one of the best places: the project has several different components and at al l of them Peherstorfer is a highly recognized expert. This, as well as the presence of strong groups of Functional and Numerical Analysis at the University produces an extra ordinary opportunity for the further scientific grow of the applicant. Realization of the project will reinforce also the scientific excellence of the community via the knowledge transfer, e.g. the applicant will deliver the newest powerful methods of Harmonic Analysis elaborated at MSU.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP6-2002-MOBILITY-7
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

IIF - Marie Curie actions-Incoming International Fellowships

Koordinator

UNIVERSITAET LINZ
EU-Beitrag
Keine Daten
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0