Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Interactions between von Neumann algebras and quantum algebras

Ziel

During his construction of a solid mathematical theory behind - the at that time completely new - quantum mechanics, von Neumann introduced his eponymous algebras to describe observable quantities. These “von Neumann algebras” became a basic tool in various other branches of mathematics, including Lie theory (the theory of continuous symmetries), non-commutative geometry (a “quantum” version of classical differential geometry), and, surprisingly, the theory of knots, for which V. Jones received a Fields Medal.

Strangely enough, although the theory of von Neumann algebras is quite pervasive in mathematics and mathematical physics, their actual construction and classification remains largely shrouded in mystery (despite deep work on classification by A. Connes, also getting him a Fields Medal). Particularly unsatisfactory is that the types of von Neumann algebras that are most relevant to quantum mechanics, so-called “type III”-algebras, are very rare.

With this Marie-Curie fellowship, I pick up the two challenges of construction and classification, especially focussing on Connes' famous rigidity conjecture for lattices in Lie groups as well as type III von Neumann algebras, using two entirely new approaches. The first is the use of finite-dimensional approximations, that I used previously in a different context (studying the Haagerup property and Lp-Fourier multipliers). The second new approach is based on the theory of quantum groups.

Utrecht University (host institution) is the unique place in Europe housing both experts in non-commutative analysis and Lie theory, and thereby provides exactly the necessary (complementary) expertise that is necessary to attack these deep and profound problems.

The results will have a lasting impact on and connect further the theories of non-commutative geometry, operator algebras, Lie theory, quantum group theory and partly quantum physics.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) H2020-MSCA-IF-2015

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

UNIVERSITEIT UTRECHT
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 165 598,80
Adresse
HEIDELBERGLAAN 8
3584 CS Utrecht
Niederlande

Auf der Karte ansehen

Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 165 598,80
Mein Booklet 0 0