Objetivo
The notion of big data and its application in driving organizational decision making has attracted enormous attention over the past couple of years. Prominent examples of companies engaging in the big data paradigm have illustrated the potential in generating substantial business impacts and fundamentally changing the way organizational-level decisions are made. The need to harness the potential of rapidly expanding data volume, velocity, and variety, has seen a significant evolution of techniques and technologies for data storage, management, analysis, and visualization. Yet, there is limited understanding of how organizations need to change to embrace these technological innovations and the business shifts they entail. The purpose of CADENT is to examine how big data is successfully exploited and by which means it improves competitive performance. The aim is to identify the critical success factors in a range of contexts, and use these findings to promote research and practice. More specifically, the proposed research project is targeted in identifying and categorizing the primary decisions needs from big data intelligence and analytics in varying industries and for different strategic orientations. The goal is to develop a clear understanding of how strategy and context shape data-driven information requirements, and explore through a holistic approach the human, technological, managerial, and relational aspects that contribute to successful data-driven decisions. In effect, the CADENT project seeks to explore through case studies, action research, as well as qualitative and quantitative methods how big data is optimally exploited and the organizational changes it creates. Implications stemming from the CADENT project will serve industry by providing a set of guidelines for companies adopting big data strategies to optimally exploit their investments and gain a competitive edge.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias socialessociologíagobernanza
- ciencias socialesciencias políticasnormativa políticasociedad civilorganización no gubernamental
- ciencias naturalesinformática y ciencias de la informaciónciencia de datosmacrodatos
- ciencias socialeseconomía y empresagestión y empresas
- ingeniería y tecnologíaingeniería eléctrica, ingeniería electrónica, ingeniería de la informacióningeniería de la informacióntelecomunicación
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Régimen de financiación
MSCA-IF-EF-ST - Standard EFCoordinador
7491 Trondheim
Noruega