Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Interacting relativistic quantum dynamics via multi-time integral equations

Ziel

Multi-time wave functions are quantum-mechanical wave functions with N space-time arguments for N particles. They were suggested by the Nobel laureates Dirac, Tomonaga and Schwinger as a particularly natural way of achieving manifest Lorentz invariance in the Schrödinger picture. While for a long time it was not clear how to obtain consistent interacting dynamics for multi-time wave functions, this has changed recently when a series of papers has clarified the theory of multi-time Schrödinger equations and provided the first interacting toy models. This project aims, with the long-term goal of a rigorous multi-time formulation of quantum field theory in mind, at improving on these models by considering the possibility of integral equations to formulate interacting dynamics for multi-time wave functions of N=2 particles. This is especially promising, as integral equations avoid a restrictive consistency condition that one faces for differential multi-time equations. Furthermore, the typical ultraviolet divergencies of quantum field theory are avoided.
The objectives are (1) to study the existence of solutions of a particular integral equation similar to the Bethe-Salpeter equation, (2) to assess whether the integral equation is compatible with a probabilistic meaning, as well as (3) to determine the classical limit of the integral equation and to compare it with the action-at-a-distance formulation of classical electrodynamics due to Gauß, Fokker, Tetrode, Wheeler and Feynman.
Objective (1) shall be approached using the theory of Fredholm integral equations, as well as partial results in the physics literature. For (2), suitable conserved tensor currents with a positive density component shall be constructed. (3) shall be reached by studying wave packets concentrated around the classical world-lines of particles using (and extending) functional-analytic methods of the classical limit, such as Hagedorn wave packets and Wigner functions.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MSCA-IF-GF - Global Fellowships

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) H2020-MSCA-IF-2015

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

EBERHARD KARLS UNIVERSITAET TUEBINGEN
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 239 860,80
Adresse
GESCHWISTER-SCHOLL-PLATZ
72074 Tuebingen
Deutschland

Auf der Karte ansehen

Region
Baden-Württemberg Tübingen Tübingen, Landkreis
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 239 860,80

Partner (1)

Mein Booklet 0 0