Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The Magnetised Cosmic Web

Objective

On large scales cosmic matter is distributed in a web consistent of clusters, filaments, walls and voids.
While the dark-matter skeleton of the cosmic web is closely traced by galaxies and galaxy clusters, the gaseous distribution has never been directly imaged at any wavelength. This situation might change within the next decade, thanks to the new generation of radio instruments that will survey the sky: LOFAR, MWA, ASKAP and the Square Kilometer Array. Non-thermal components, relativistic particles and magnetic fields are thought to have a spatial distribution that is broader than that of thermal baryons. For this reason, the new generation of radio telescopes should might be able to detect the tip of the iceberg from the rarefied intergalactic medium, provided that magnetic fields are sufficiently amplified in these regions. The detectable signal is expected to be weak and complex because of the contribution from radio galaxies and to the presence of diffuse fore- and backgrounds.
The developments proposed in this ERC proposal are exactly designed to address this complexity, and turn future radio observations into a unique probe of the growth of magnetic fields and of the acceleration of particles. This will be possible through the theoretical exploration of plasmas in extreme conditions with sophisticated numerical simulations. With these simulations I will be able to predict the specific radio signature for the origin of extragalactic fields. This will enable the community to use radio surveys in a quantitative way and to determine the origin of extragalactic magnetism, a longstanding puzzle connected to many open questions of modern astrophysics.
The legacy of this project will be its quantitative representation of non-thermal processes on the largest scales, ultimately going to be fully exploited by the Square Kilometer Array.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-STG

See all projects funded under this call

Host institution

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 265 943,00
Address
VIA ZAMBONI 33
40126 Bologna
Italy

See on map

Region
Nord-Est Emilia-Romagna Bologna
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 265 943,00

Beneficiaries (2)

My booklet 0 0