Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Differential Inclusions and Fluid Mechanics

Objectif

Important problems in science often involve structures on several distinct length scales. Two typical examples are fine phase mixtures in solid-solid phase transitions and the complex mixing patterns in turbulent or multiphase flows. The microstructures in such situations influence in a crucial way the macroscopic behavior of the system, and understanding the formation, interaction and overall effect of these structures is a great scientific challenge. Although there is a large variety of models and descriptions for such phenomena, a recurring issue in the mathematical analysis is that one has to deal with very complex and highly non-smooth structures in solutions of the associated partial differential equations.

A common ground is provided by the analysis of differential inclusions, a theory whose development was strongly influenced by the influx of ideas from the work of Gromov on partial differential relations, building on celebrated constructions of Nash for isometric immersions, and the work of Tartar in the study of oscillation phenomena in nonlinear partial differential equations. A recent success of this approach is provided by my work on the h-principle in fluid mechanics and Onsager's conjecture. Against this background my aim in this project is to go significantly beyond the state of the art, both in terms of the methods and in terms of applications of differential inclusions. One part of the project is to continue my work on fluid mechanics with the ultimate goal to address important challenges in the field: providing an analytic foundation for the K41 statistical theory of turbulence and for the behavior of turbulent flows near instabilities and boundaries. A further aim is to explore rigidity phenomena and to attack several outstanding open problems in the context of differential inclusions, most prominently Morrey's conjecture on quasiconvexity and rank-one convexity.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2016-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITAET LEIPZIG
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 860 875,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 860 875,00

Bénéficiaires (1)

Mon livret 0 0