Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Differential Inclusions and Fluid Mechanics

Ziel

Important problems in science often involve structures on several distinct length scales. Two typical examples are fine phase mixtures in solid-solid phase transitions and the complex mixing patterns in turbulent or multiphase flows. The microstructures in such situations influence in a crucial way the macroscopic behavior of the system, and understanding the formation, interaction and overall effect of these structures is a great scientific challenge. Although there is a large variety of models and descriptions for such phenomena, a recurring issue in the mathematical analysis is that one has to deal with very complex and highly non-smooth structures in solutions of the associated partial differential equations.

A common ground is provided by the analysis of differential inclusions, a theory whose development was strongly influenced by the influx of ideas from the work of Gromov on partial differential relations, building on celebrated constructions of Nash for isometric immersions, and the work of Tartar in the study of oscillation phenomena in nonlinear partial differential equations. A recent success of this approach is provided by my work on the h-principle in fluid mechanics and Onsager's conjecture. Against this background my aim in this project is to go significantly beyond the state of the art, both in terms of the methods and in terms of applications of differential inclusions. One part of the project is to continue my work on fluid mechanics with the ultimate goal to address important challenges in the field: providing an analytic foundation for the K41 statistical theory of turbulence and for the behavior of turbulent flows near instabilities and boundaries. A further aim is to explore rigidity phenomena and to attack several outstanding open problems in the context of differential inclusions, most prominently Morrey's conjecture on quasiconvexity and rank-one convexity.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-COG - Consolidator Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2016-COG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

UNIVERSITAET LEIPZIG
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 860 875,00
Adresse
RITTERSTRASSE 26
04109 Leipzig
Deutschland

Auf der Karte ansehen

Region
Sachsen Leipzig Leipzig
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 860 875,00

Begünstigte (1)

Mein Booklet 0 0