Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Galois theory of periods and applications.

Objetivo

A period is a complex number defined by the integral of an algebraic differential form over a region defined by polynomial inequalities. Examples include: algebraic numbers, elliptic integrals, and Feynman integrals in high-energy physics. Many problems in mathematics can be cast as a statement involving periods. A deep idea, based on Grothendieck's philosophy of motives, is that there should be a Galois theory of periods, generalising classical Galois theory for algebraic numbers. This reposes on inaccessible conjectures in transcendence theory, but these can be circumvented in many important cases using an elementary notion of motivic periods. This allows one to set up a working Galois theory of periods in many situations of arithmetic and physical interest.

These ideas grew out of the PI's recent proof of the Deligne-Ihara conjecture, in which the Galois theory of multiple zeta values was worked out. Multiple zeta values are one of the most fundamental families of periods, and their Galois group plays an important role in mathematics: it is conjecturally equal to Drinfeld's Grothendieck-Teichmuller group, the stable derivation algebra on moduli spaces of curves, and the Galois group of mixed Tate motives over the integers. It occurs in deformation quantization, the homology of the graph complex, and the Kashiwara-Vergne problem, as well as having numerous connections to string theory, and quantum field theory.

The goal of this proposal is to generalise this picture. Periods of moduli spaces of curves, multiple L-functions of modular forms, and Feynman amplitudes in quantum field and string theory should each have their own Galois theory
which is yet to be worked out.

This is completely uncharted territory, and will have numerous applications to number theory, algebraic geometry and physics.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-COG - Consolidator Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2016-COG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 997 959,00
Dirección
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Reino Unido

Ver en el mapa

Región
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 997 959,00

Beneficiarios (1)

Mi folleto 0 0