Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Galois theory of periods and applications.

Obiettivo

A period is a complex number defined by the integral of an algebraic differential form over a region defined by polynomial inequalities. Examples include: algebraic numbers, elliptic integrals, and Feynman integrals in high-energy physics. Many problems in mathematics can be cast as a statement involving periods. A deep idea, based on Grothendieck's philosophy of motives, is that there should be a Galois theory of periods, generalising classical Galois theory for algebraic numbers. This reposes on inaccessible conjectures in transcendence theory, but these can be circumvented in many important cases using an elementary notion of motivic periods. This allows one to set up a working Galois theory of periods in many situations of arithmetic and physical interest.

These ideas grew out of the PI's recent proof of the Deligne-Ihara conjecture, in which the Galois theory of multiple zeta values was worked out. Multiple zeta values are one of the most fundamental families of periods, and their Galois group plays an important role in mathematics: it is conjecturally equal to Drinfeld's Grothendieck-Teichmuller group, the stable derivation algebra on moduli spaces of curves, and the Galois group of mixed Tate motives over the integers. It occurs in deformation quantization, the homology of the graph complex, and the Kashiwara-Vergne problem, as well as having numerous connections to string theory, and quantum field theory.

The goal of this proposal is to generalise this picture. Periods of moduli spaces of curves, multiple L-functions of modular forms, and Feynman amplitudes in quantum field and string theory should each have their own Galois theory
which is yet to be worked out.

This is completely uncharted territory, and will have numerous applications to number theory, algebraic geometry and physics.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-COG - Consolidator Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2016-COG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 997 959,00
Indirizzo
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Regno Unito

Mostra sulla mappa

Regione
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 997 959,00

Beneficiari (1)

Il mio fascicolo 0 0