Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Galois theory of periods and applications.

Objectif

A period is a complex number defined by the integral of an algebraic differential form over a region defined by polynomial inequalities. Examples include: algebraic numbers, elliptic integrals, and Feynman integrals in high-energy physics. Many problems in mathematics can be cast as a statement involving periods. A deep idea, based on Grothendieck's philosophy of motives, is that there should be a Galois theory of periods, generalising classical Galois theory for algebraic numbers. This reposes on inaccessible conjectures in transcendence theory, but these can be circumvented in many important cases using an elementary notion of motivic periods. This allows one to set up a working Galois theory of periods in many situations of arithmetic and physical interest.

These ideas grew out of the PI's recent proof of the Deligne-Ihara conjecture, in which the Galois theory of multiple zeta values was worked out. Multiple zeta values are one of the most fundamental families of periods, and their Galois group plays an important role in mathematics: it is conjecturally equal to Drinfeld's Grothendieck-Teichmuller group, the stable derivation algebra on moduli spaces of curves, and the Galois group of mixed Tate motives over the integers. It occurs in deformation quantization, the homology of the graph complex, and the Kashiwara-Vergne problem, as well as having numerous connections to string theory, and quantum field theory.

The goal of this proposal is to generalise this picture. Periods of moduli spaces of curves, multiple L-functions of modular forms, and Feynman amplitudes in quantum field and string theory should each have their own Galois theory
which is yet to be worked out.

This is completely uncharted territory, and will have numerous applications to number theory, algebraic geometry and physics.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2016-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 997 959,00
Adresse
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Royaume-Uni

Voir sur la carte

Région
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 997 959,00

Bénéficiaires (1)

Mon livret 0 0