Obiettivo Understanding the complex interactions and dynamics of multiple quantum particles within large networks is an extremely challenging task, but doing so reveals the underlying structure of an enormously diverse range of phenomena. Therefore, a reliable platform to investigate complex quantum network dynamics, which incorporates the rich interplay between noise, coherence and nonclassical correlations, will be an extremely powerful tool. Classical optical networks have been widely used to simulate a broad range of propagation phenomena across many disparate areas of physics, chemistry and biology, based on coherent interference of waves. At the quantum level, the quantized nature of light – the existence of photons – gives rise to bosonic interference effects that are completely counter-intuitive. Yet, to date, quantum network experiments remain very limited in terms of the number of photons, reconfigurability and, most importantly, network size. Here, we propose time-multiplexed optical networks, in combination with tailored multi-photon states as a new platform for large-scale quantum networks. Our approach allows us to emulate multi-particle dynamics on complex structures, specifically the role of bosonic interference, correlations and entanglement. To achieve large networks sizes, we will develop novel decoherence mitigation strategies: programmable noise, topologically protected quantum states and perpetual entanglement distillation. This approach will blend ideas from solid state physics, random media and quantum information and communication in order to pursue the following three objectives:1. Demonstrate noise-assisted entanglement distribution2. Demonstrate nonclassical states on topological structures3. Demonstrate perpetual distillation of entanglement within a networkThese objectives target the overall goal to understand the role of multi-particle quantum physics in complex, large-scale structures harnessing time-multiplexed photonic networks. Campo scientifico scienze naturaliscienze fisichefisica quantisticaingegneria e tecnologiaingegneria elettrica, ingegneria elettronica, ingegneria informaticaingegneria informaticatelecomunicazionireti di telecomunicazionereti ottichescienze naturaliscienze fisichefisica della materia condensatafisica dello stato solidoingegneria e tecnologiaingegneria chimicatecnologie di separazionedistillazionescienze naturaliscienze fisichefisica teoreticafisica delle particellefotoni Programma(i) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Argomento(i) ERC-2016-COG - ERC Consolidator Grant Invito a presentare proposte ERC-2016-COG Vedi altri progetti per questo bando Meccanismo di finanziamento ERC-COG - Consolidator Grant Coordinatore UNIVERSITAET PADERBORN Contribution nette de l'UE € 1 963 750,00 Indirizzo Warburger strasse 100 33098 Paderborn Germania Mostra sulla mappa Regione Nordrhein-Westfalen Detmold Paderborn Tipo di attività Higher or Secondary Education Establishments Collegamenti Contatta l’organizzazione Opens in new window Sito web Opens in new window Partecipazione a programmi di R&I dell'UE Opens in new window Rete di collaborazione HORIZON Opens in new window Altri finanziamenti € 0,00 Beneficiari (1) Classifica in ordine alfabetico Classifica per Contributo netto dell'UE Espandi tutto Riduci tutto UNIVERSITAET PADERBORN Germania Contribution nette de l'UE € 1 963 750,00 Indirizzo Warburger strasse 100 33098 Paderborn Mostra sulla mappa Regione Nordrhein-Westfalen Detmold Paderborn Tipo di attività Higher or Secondary Education Establishments Collegamenti Contatta l’organizzazione Opens in new window Sito web Opens in new window Partecipazione a programmi di R&I dell'UE Opens in new window Rete di collaborazione HORIZON Opens in new window Altri finanziamenti € 0,00