Objective
ROLINCAP will search, identify and test novel phase-change solvents, including aqueous and non-aqueous options, as well as phase-change packed bed and Rotating Packed Bed processes for post-combustion CO2 capture. These are high-potential technologies, still in their infancy, with initial evidence pointing to regeneration energy requirements below 2.0 GJ/ton CO2 and considerable reduction of the equipment size, several times compared to conventional processes . These goals will be approached through a holistic decision making framework consisting of methods for modeling and design that have the potential for real breakthroughs in CO2 capture research. The tools proposed in ROLINCAP will cover a vast space of solvent and process options going far beyond the capabilities of existing simulators. ROLINCAP follows a radically new path by proposing one predictive modelling framework, in the form of the SAFT-γ equation of state, for both physical and chemical equilibrium, for a wide range of phase behaviours and of molecular structures. The envisaged thermodynamic model will be used in optimization-based Computer-aided Molecular Design of phase-change solvents in order to identify options beyond the very few previously identified phase-change solvents. Advanced process design approaches will be used for the development of highly intensified Rotating Packed Bed processes. Phase-change solvents will be considered with respect to their economic and operability RPB process characteristics. The sustainability of both the new solvents and the packed-bed and RPB processes will be investigated considering holistic Life Cycle Assessment analysis and Safety Health and Environmental Hazard assessment. Selected phase-change solvents, new RPB column concepts and packing materials will be tested at TRL 4 and 5 pilot plants. Software in the form of a new SAFT-γ equation of state will be tested at TRL 5 in the gPROMS process simulator.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences thermodynamics
- engineering and technology environmental engineering energy and fuels fossil energy natural gas
- social sciences sociology governance crisis management
- engineering and technology environmental engineering carbon capture engineering
- natural sciences computer and information sciences software software applications simulation software
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.3.2. - Low-cost, low-carbon energy supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-LCE-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
57 001 THERMI THESSALONIKI
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.