Objective
The main objective of the project is to design and implement a parameterized, knowledge-based, multi-target food sensitive mini-portable system, with heterogeneous micro-scale photonics for on-the-spot food quality sensing and shelf-life prediction. In particular, the miniaturized smart integrated system will be able to detect food hazards, spoilage (incl. early sign of spoilage) and food fraud through the combined bio-chemical data analysis and additionally will be able to perform food components/additives analysis, food identification and prediction of food shelf-life.
The following use case will be addressed during the project: Use case 1: Detection of mycotoxins in various grains and nuts. Aflatoxins detection. A simple, convenient ultraviolet test makes it possible to detect the possible presence of aflatoxin. Use case 2: Detection of early sign of spoilage and spoilage in fruits, vegetables, meat, fish: combined with estimation on product expiration date. Use case 3: Detection of food fraud: Adulteration of alcoholic beverages, oil, milk and meat. 3 sensor devices will be integrated in the miniaturised smart sensor node: i) a MEMS-based near IR spectrometer (950-1900 nm), ii) a UV-VIS spectrometer (450-900 nm) and iii) a micro-camera. Moreover 3 light sources will also be integrated to support the sensing functionality: i) UV-LED, ii) white LED and iii) a miniaturised IR emitter. Smart signal processing of the spectrum images will be performed by an advanced microcontroller, integrated in the sensing device. The data will be communicated to a smartphone device, where the spectroscopy analysis will take place with the help of a cloud-base application connected to a reference database. Advanced detection algorithms will be deployed both in the level of cloud and the smartphone application. PhasmaFOOD system will enable common consumers for on the spot food quality sensing and shelf-life prediction.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors smart sensors
- engineering and technology other engineering and technologies food technology food safety
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications mobile phones
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1050 Bruxelles / Brussel
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.