Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Log Correlations and Random Matrices

Objectif

Random Matrix Theory has been of central importance in Mathematical Physics for over 50 years. It has deep connections with many other areas of Mathematics and a remarkably wide range of applications. In 2012, a new avenue of research was initiated linking Random Matrix Theory to the highly active area of Probability Theory concerned with the extreme values of logarithmically correlated Gaussian fields, such as the branching random walk and the two-dimensional Gaussian Free Field. This connects the extreme value statistics of the characteristic polynomials of random matrices asymptotically to those of the Gaussian fields in question, allowing some important and long-standing open questions to be addressed for the first time. It has led to a flurry of activity and significant progress towards proving some of the main conjectures. A remarkable discovery has been that the characteristic polynomials of random matrices exhibit, asymptotically, a hierarchical branching/tree structure like that of the branching random walk. However, many of the most important questions remain open. My aim is to attack some of these problems using ideas and techniques that have so far not been applied to them: I believe it is possible to compute some important statistical quantities relating to the extreme values of characteristic polynomials exactly, for the first time, by establishing connections with integrable systems, representation theory, and enumerative combinatorics. Such connections have not previously been explored. I anticipate that this will have a significant impact on an area that is currently in a rapid phase of development and that it will settle some of the principal unresolved conjectures. I further believe that ideas exploiting the hierarchical branching structure may have new and unexpected implications for areas connected with Random Matrix Theory, including, in particular, Number Theory, and I plan to explore these too.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-ADG - Advanced Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2016-ADG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 388 878,86
Adresse
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Royaume-Uni

Voir sur la carte

Région
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 388 878,86

Bénéficiaires (2)

Mon livret 0 0