Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Log Correlations and Random Matrices

Obiettivo

Random Matrix Theory has been of central importance in Mathematical Physics for over 50 years. It has deep connections with many other areas of Mathematics and a remarkably wide range of applications. In 2012, a new avenue of research was initiated linking Random Matrix Theory to the highly active area of Probability Theory concerned with the extreme values of logarithmically correlated Gaussian fields, such as the branching random walk and the two-dimensional Gaussian Free Field. This connects the extreme value statistics of the characteristic polynomials of random matrices asymptotically to those of the Gaussian fields in question, allowing some important and long-standing open questions to be addressed for the first time. It has led to a flurry of activity and significant progress towards proving some of the main conjectures. A remarkable discovery has been that the characteristic polynomials of random matrices exhibit, asymptotically, a hierarchical branching/tree structure like that of the branching random walk. However, many of the most important questions remain open. My aim is to attack some of these problems using ideas and techniques that have so far not been applied to them: I believe it is possible to compute some important statistical quantities relating to the extreme values of characteristic polynomials exactly, for the first time, by establishing connections with integrable systems, representation theory, and enumerative combinatorics. Such connections have not previously been explored. I anticipate that this will have a significant impact on an area that is currently in a rapid phase of development and that it will settle some of the principal unresolved conjectures. I further believe that ideas exploiting the hierarchical branching structure may have new and unexpected implications for areas connected with Random Matrix Theory, including, in particular, Number Theory, and I plan to explore these too.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-ADG - Advanced Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2016-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 388 878,86
Indirizzo
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Regno Unito

Mostra sulla mappa

Regione
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 388 878,86

Beneficiari (2)

Il mio fascicolo 0 0