Objetivo The field of quantum materials has developed into an active playground for testing novel ideas and protocols for future devices governed by the principles of quantum mechanics. Quantum technologies might result in revolutionary improvements in terms of capacity, sensitivity, and speed, and will be the decisive factor for success in many industries and markets (http://qurope.eu/manifesto). Molecular magnets, realized by tailored molecules hosting magnetic ions, offer the possibility to obtain a few-spin object, necessary in order to perform basic quantum operations. The first molecular devices have enabled the read-out and manipulation of the spin states. Single-shot read-out times of one second have been achieved for a nuclear spin, which is, however, too slow for applications. Here, we will remove this bottleneck by developing reliable, fast, and scalable optical methods for the read-out of both electron and nuclear spin states allowing us to perform basic quantum-information processing protocols. The scientific approach is to use high-quality quantum emitters (NV-centers in diamond, ligand quantum emitters, 2D materials, or other optically active ions) to optically read-out efficiently the spin states of the magnetic molecules. Special care will be taken to minimize back action from the read-out emitter on the spin system and thereby preserving the quantum states. Various optical techniques (surface enhanced fluorescence, surface enhanced Raman scattering, and optical fiber scanning cavities) will be used to enhance the light-matter interaction to obtain a reliable and fast optical read-out. Due to of the possibilities of scanning the probing laser and using different fluorescence energies, the optical read-out is scalable to larger systems and 2D networks of molecules.The project deals with the fundamental science of optical manipulation and characterization of molecular qubits and will advance the field of quantum optics and quantum electronics of single-spin systems. Ámbito científico ingeniería y tecnologíananotecnologíananomaterialesnanoestructuras bidimensionalesingeniería y tecnologíaingeniería eléctrica, ingeniería electrónica, ingeniería de la informacióningeniería electrónicahardware informáticoordenador cuánticociencias naturalesciencias físicasfísica cuánticaóptica cuánticaciencias naturalesciencias físicasópticafibra ópticaciencias naturalesciencias físicasópticafísica del láser Programa(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Tema(s) ERC-2016-ADG - ERC Advanced Grant Convocatoria de propuestas ERC-2016-ADG Consulte otros proyectos de esta convocatoria Régimen de financiación ERC-ADG - Advanced Grant Coordinador KARLSRUHER INSTITUT FUER TECHNOLOGIE Aportación neta de la UEn € 2 335 416,25 Dirección Kaiserstrasse 12 76131 Karlsruhe Alemania Ver en el mapa Región Baden-Württemberg Karlsruhe Karlsruhe, Stadtkreis Tipo de actividad Higher or Secondary Education Establishments Enlaces Contactar con la organización Opens in new window Sitio web Opens in new window Participación en los programas de I+D de la UE Opens in new window Red de colaboración de HORIZON Opens in new window Otras fuentes de financiación € 0,00 Beneficiarios (1) Ordenar alfabéticamente Ordenar por aportación neta de la UE Ampliar todo Contraer todo KARLSRUHER INSTITUT FUER TECHNOLOGIE Alemania Aportación neta de la UEn € 2 335 416,25 Dirección Kaiserstrasse 12 76131 Karlsruhe Ver en el mapa Región Baden-Württemberg Karlsruhe Karlsruhe, Stadtkreis Tipo de actividad Higher or Secondary Education Establishments Enlaces Contactar con la organización Opens in new window Sitio web Opens in new window Participación en los programas de I+D de la UE Opens in new window Red de colaboración de HORIZON Opens in new window Otras fuentes de financiación € 0,00