Objetivo
This project is dedicated to studying a geometric invariant called the Bogomolov multiplier. The main objectives of the proposed project are threefold.
First of all, we wish to understand how the structure of the Bogomolov multiplier depends on the structure of the underlying group. To this end, we set to inspect the behavior of the Bogomolov multiplier with respect to another group theoretical invariant, the coclass. In turn, this will require thoroughly developing a theory of Bogomolov multipliers associated to profinite groups. A particular instance of these are $p$-adic Lie groups. We aim to enrich our understanding of their Bogomolov multipliers by translating the study to their associated Lie algebras.
Secondly, we are interested in applications of our knowledge about the Bogomolov multiplier. Our focus here will be to strengthen the visible connections between the Bogomolov multiplier and automorphism groups. Kang and Kunyavskii recently noted a link between the Bogomolov multiplier and the Tate-Shafarevich set. This relation is expressible in terms of outer automorphisms of a given group. We aim to prove the implication that groups possessing special outer automorphisms must have nontrivial Bogomolov multipliers. Further evidence of this interplay between automorphisms and Bogomolov multipliers can be seen in the category of representations of a given group as shown by Davydov, and we intend to look into these more abstract aspects as well.
Lastly, we propose to explore some extensions of the Bogomolov multiplier to higher dimensions. Our intentions here are to find algebraic descriptions of higher dimensional unramified cohomology groups and of Ekedahl invariants akin to the combinatorial description of the Bogomolov multiplier. Peyre has shown that this can be achieved for unramified cohomology groups of degree three for a special class of groups. We see a possible extension of these results in terms of higher dimensional combinatorial objects.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas aplicadas física matemática
- ciencias naturales matemáticas matemáticas puras geometría
- ciencias naturales matemáticas matemáticas puras álgebra geometría algebraica
- ciencias sociales derecho
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF-EF-ST - Standard EF
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2016
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
48940 Leioa
España
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.