Obiettivo
This project is dedicated to studying a geometric invariant called the Bogomolov multiplier. The main objectives of the proposed project are threefold.
First of all, we wish to understand how the structure of the Bogomolov multiplier depends on the structure of the underlying group. To this end, we set to inspect the behavior of the Bogomolov multiplier with respect to another group theoretical invariant, the coclass. In turn, this will require thoroughly developing a theory of Bogomolov multipliers associated to profinite groups. A particular instance of these are $p$-adic Lie groups. We aim to enrich our understanding of their Bogomolov multipliers by translating the study to their associated Lie algebras.
Secondly, we are interested in applications of our knowledge about the Bogomolov multiplier. Our focus here will be to strengthen the visible connections between the Bogomolov multiplier and automorphism groups. Kang and Kunyavskii recently noted a link between the Bogomolov multiplier and the Tate-Shafarevich set. This relation is expressible in terms of outer automorphisms of a given group. We aim to prove the implication that groups possessing special outer automorphisms must have nontrivial Bogomolov multipliers. Further evidence of this interplay between automorphisms and Bogomolov multipliers can be seen in the category of representations of a given group as shown by Davydov, and we intend to look into these more abstract aspects as well.
Lastly, we propose to explore some extensions of the Bogomolov multiplier to higher dimensions. Our intentions here are to find algebraic descriptions of higher dimensional unramified cohomology groups and of Ekedahl invariants akin to the combinatorial description of the Bogomolov multiplier. Peyre has shown that this can be achieved for unramified cohomology groups of degree three for a special class of groups. We see a possible extension of these results in terms of higher dimensional combinatorial objects.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica applicata fisica matematica
- scienze naturali matematica matematica pura geometria
- scienze naturali matematica matematica pura algebra geometria algebrica
- scienze sociali legge
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MSCA-IF-EF-ST - Standard EF
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) H2020-MSCA-IF-2016
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
48940 LEIOA
Spagna
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.