Obiettivo Work over the last decade has shown that the genetic programs underlying cell identity are still plastic in terminally differentiated cells. Direct lineage reprogramming takes advantage of this plasticity to induce cell fate conversions from one cell type into another. This is achieved by forced expression of specific fate determinants, usually transcription factors that regulate cell fate during development. This proposal will allow me to address the fundamental biological question whether human glia can be reprogrammed within a human tissue setting, and if so, whether this depends on their state of maturation. I propose to study the possibility of converting human glia into induced neurons within an in vivo-like tissue context. Towards this I will employ cutting-edge techniques such as generation of cerebral organoids from human induced pluripotent stem cells (hiPSCs) and genome-editing techniques to allow for inducible expression of reprogramming factors in human glia at different maturation stages within the cerebral organoids. In order to perform the hiPSCs genome-editing I will use CRISPR/Cas9 technology which will permit me to obtain stable, cell-type specific and inducible hiPSC lines. This novel and valuable genome editing strategy will facilitate the use of different reprogramming factors sets in order to optimize the reprogramming of glial cells into functional neurons. This study may pave the way for translating direct lineage reprogramming into new strategies for brain repair. Campo scientifico scienze mediche e della salutebiotecnologia medicaingegneria geneticaterapia genicascienze mediche e della salutebiotecnologia medicatecnologie cellularicellule staminaliscienze naturaliscienze biologichegeneticagenomi Programma(i) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Argomento(i) MSCA-IF-2016 - Individual Fellowships Invito a presentare proposte H2020-MSCA-IF-2016 Vedi altri progetti per questo bando Meccanismo di finanziamento MSCA-IF-EF-ST - Standard EF Coordinatore UNIVERSITAETSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITAET MAINZ Contribution nette de l'UE € 171 460,80 Indirizzo Langenbeckstrasse 1 55131 Mainz Germania Mostra sulla mappa Regione Rheinland-Pfalz Rheinhessen-Pfalz Mainz, Kreisfreie Stadt Tipo di attività Higher or Secondary Education Establishments Collegamenti Contatta l’organizzazione Opens in new window Sito web Opens in new window Partecipazione a programmi di R&I dell'UE Opens in new window Rete di collaborazione HORIZON Opens in new window Altri finanziamenti € 0,00