Objetivo
MiLC will develop logical characterisations of monotone complexity classes, yielding languages and systems which are machine-independent and well suited for reasoning over such classes of functions. Monotone Boolean functions abound in the theory of computation, e.g. in sorting algorithms and clique detection in graphs, and nonuniform classes of monotone functions have been well studied in computational complexity under the lens of monotone circuits.
From the point of view of computation, monotone functions are computed by algorithms not using negation, and this will lead to several recursion-theoretic characterisations of feasible classes such as monotone P, NCi, ACi and the polynomial hierarchy. The main purpose of MiLC will be to capture these classes proof theoretically, by calibrating each class with the formally representable functions of a certain theory. MiLC will work in the setting of Bounded Arithmetic since its techniques are well suited to handling monotonicity, building on recently discovered correspondences with monotone proof complexity. To this end two avenues for controlling monotonicity will be investigated: (a) restricting negation in proofs, inducing monotone witnessing invariants, and (b) restricting structural rules of the underlying logic to eliminate the nonmonotone cases of witness extraction. The aim is to arrive at modular characterisations, where monotonicity of a represented class is switched on or off by the inclusion or exclusion, respectively, of certain structural rules.
Finally MiLC will calibrate these theories with well studied systems in proof complexity, namely monotone, intuitionistic and deep inference systems, under the usual correspondence between theories of Bounded Arithmetic and systems of propositional logic. These tight correspondences ensure that the tools developed in MiLC may be employed to attack certain open problems in the area, reformulating and improving existing bounds.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras matemáticas discretas lógica matemática
- ciencias naturales matemáticas matemáticas puras aritmética
- ciencias naturales matemáticas matemáticas puras álgebra
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF-EF-ST - Standard EF
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2016
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
1165 KOBENHAVN
Dinamarca
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.