Objective
Insects are extremely efficient feeders that impact on the world's ecosystems and our agriculture with their feeding capabilities. Insects evolved diverse mouthpart types during ~400 million years of evolution which allowed them to conquer many food recourses. How this feeding system evolved, in particular the transition from one mouthpart type to the other, is unclear. My idea represents the first extensive assessment of insect head mechanics applying latest semi-automatic workflows and engineering approaches to unravel the factors driving insect mouthpart evolution and performance.
Specifically, I will study the mechanical evolution from early biting-chewing to piercing-sucking mouthparts and head types, considering recent as well as fossil species.
In contrast to earlier studies, I aim to quantify mechanical evolution for the whole head which has never been attempted before for insects. This will be done using engineering software to simulate insect feeding, followed by 3D shape analysis and finally evolutionary modelling using algorithms based on likelihood models of evolutionary processes. The project is therefore positioned at the interconnection between experimental biology, engineering and biological simulation.
The results will impact our understanding of insect evolution, with the project identifying which mechanical factors made insects such extraordinarily successful feeders, and why their mouthparts evolved into so many different types. To achieve an integrative understanding, my idea will furthermore take into account ecological, evolutionary and life history factors. Understanding the mechanical head evolution has never been tried before in a systematic way at this scale. However, my project idea also delivers results for industry: Since modern engineering methods are used, the results can be readily exported to the industry for the design of lighter robot arms with better lifting capabilities, thus advancing robotic techniques.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences biological sciences evolutionary biology
- natural sciences biological sciences ecology ecosystems
- agricultural sciences agriculture, forestry, and fisheries agriculture
- natural sciences biological sciences zoology entomology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
53113 BONN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.