Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Deep Learning for Structured Prediction in Natural Language Processing

Ziel

"Deep learning is revolutionizing the field of Natural Language Processing (NLP), with breakthroughs in machine translation, speech recognition, and question answering. New language interfaces (digital assistants, messenger apps, customer service bots) are emerging as the next technologies for seamless, multilingual communication among humans and machines.

From a machine learning perspective, many problems in NLP can be characterized as structured prediction: they involve predicting structurally rich and interdependent output variables. In spite of this, current neural NLP systems ignore the structural complexity of human language, relying on simplistic and error-prone greedy search procedures. This leads to serious mistakes in machine translation, such as words being dropped or named entities mistranslated. More broadly, neural networks are missing the key structural mechanisms for solving complex real-world tasks requiring deep reasoning.

This project attacks these fundamental problems by bringing together deep learning and structured prediction, with a highly disruptive and cross-disciplinary approach. First, I will endow neural networks with a ""planning mechanism"" to guide structural search, letting decoders learn the optimal order by which they should operate. This makes a bridge with reinforcement learning and combinatorial optimization. Second, I will develop new ways of automatically inducing latent structure inside the network, making it more expressive, scalable and interpretable. Synergies with probabilistic inference and sparse modeling techniques will be exploited. To complement these two innovations, I will investigate new ways of incorporating weak supervision to reduce the need for labeled data.

Three highly challenging applications will serve as testbeds: machine translation, quality estimation, and dependency parsing. To maximize technological impact, a collaboration is planned with a start-up company in the crowd-sourcing translation industry."

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-STG - Starting Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2017-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

INSTITUTO DE TELECOMUNICACOES
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 336 000,00
Adresse
CAMPUS UNIVERSITARIO DE SANTIAGO UNIVERSIDADE DE AVEIRO
3810-193 GLORIA E VERA CRUZ
Portugal

Auf der Karte ansehen

Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 336 000,00

Begünstigte (2)

Mein Booklet 0 0