Project description
Bridging the gap for Industry 4.0 with fog computing
In the midst of the dawn of Industry 4.0 a revolution fuelled by cutting-edge technologies, a significant challenge arises. The convergence of operational and information technologies (OT & IT) is crucial for the realisation of this new era. With the support of the Marie Skłodowska-Curie Actions programme, the FORA project will train the next generation of researchers to bridge the IT-OT gap and lead this convergence. FORA’s interdisciplinary, international and intersectoral network aims to harness the power of fog computing, a logical extension from cloud computing, to achieve this ambitious goal. With 15 early-stage researchers at the helm, the project offers integrated training across key areas such as computer science, electrical engineering, control engineering, industrial automation, applied mathematics and data science.
Objective
We are at the beginning of a new industrial revolution (Industry 4.0): disruptive technologies such as cyber-physical systems, machine-to-machine communication, Big Data and machine learning, and human-robot collaboration will transform the manufacturing and industrial automation sectors. However, Industry 4.0 will only become a reality through the convergence of Operational and Information Technologies (OT & IT). The European Parliament, says that “a very wide range of skills is required for [Industry 4.0] implementation. […] the convergence of IT, manufacturing, automation technology and software requires the development of a fundamentally new approach to training IT experts.” The FORA interdisciplinary, international, intersectoral network will train the next generation of researchers to lead this convergence and cross the IT-OT gap. The convergence will be achieved through the new concept of Fog Computing, which is a logical extension from Cloud Computing towards the edge of the network (where machines are located), enabling applications that demand guarantees in safety, security, and real-time behavior. Research objectives focus on: a reference system architecture for Fog Computing; resource management mechanisms and middleware for deploying mixed-criticality applications in the Fog; safety and security assurance; service-oriented application modeling and real-time machine learning. Our ambitious objectives require individuals with a unique combination of interdisciplinary and intersectoral skills. Thus, FORA’s 15 ESRs will receive integrated training across key areas (computer science, electrical engineering, control engineering, industrial automation, applied mathematics and data science) necessary to fully realize the potential of Fog Computing for Industry 4.0 and will move between academic and industrial environments to promote interdisciplinary and intersectoral learning.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science big data
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering
- natural sciences computer and information sciences artificial intelligence machine learning
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN-ETN - European Training Networks
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 KONGENS LYNGBY
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.