Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Symmetry in Computational Complexity

Objectif

The last 20 years of rapid development in the computational-theoretic aspects of the fixed-language Constraint Satisfaction Problems (CSPs) has been fueled by a connection between the complexity and a certain concept capturing symmetry of computational problems in this class.


My vision is that this connection will eventually evolve into the organizing principle of computational complexity and will lead to solutions of fundamental problems such as the Unique Games Conjecture or even the P-versus-NP problem. In order to break through the current limits of this algebraic approach, I will concentrate on specific goals designed to

(A) discover suitable objects capturing symmetry that reflect the complexity in problem classes, where such an object is not known yet;

(B) make the natural ordering of symmetries coarser so that it reflects the complexity more faithfully;

(C) delineate the borderline between computationally hard and easy problems;

(D) strengthen characterizations of existing borderlines to increase their usefulness as tools for proving hardness and designing efficient algorithm; and

(E) design efficient algorithms based on direct and indirect uses of symmetries.

The specific goals concern the fixed-language CSP over finite relational structures and its generalizations to infinite domains (iCSP) and weighted relations (vCSP), in which the algebraic theory is highly developed and the limitations are clearly visible.

The approach is based on joining the forces of the universal algebraic methods in finite domains, model-theoretical and topological methods in the iCSP, and analytical and probabilistic methods in the vCSP. The starting point is to generalize and improve the Absorption Theory from finite domains.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2017-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERZITA KARLOVA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 211 375,00
Adresse
OVOCNY TRH 560/5
116 36 Praha 1
Tchéquie

Voir sur la carte

Région
Česko Praha Hlavní město Praha
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 211 375,00

Bénéficiaires (1)

Mon livret 0 0