Obiettivo The increasing demand of complex organic molecules, either by their biological activity or technical interest, and the need for the development of sustainable chemical processes are opening a new period in Organic Synthesis, which is mainly focused on the discovery of novel transformations that more intensively explore concepts such as atom-economy and redox-neutrality. As part of this trend, the development new reagents capable to transfer new functional groups at the desired positions of advanced synthetic intermediates is winning a crucial role. Areas such as crop science and drug discovery make extensive use of this working methodology for the identification of new targets.Several families of “Group Transfer Reagents” are known, the most prominent ones being arguably those based on hypervalent I(III) structures. However, their transfer ability is confined to a restricted number of functionalities, and in addition, their implementation in industrial processes is seriously limited by their highly reactive nature. Hypervalent iodine (III) compounds are known to be potentially explosive and for this reason, they usually require working in relatively small scale and under restricted safety conditions. To circumvent these drawbacks, I present in SULFOSOL a novel and general approach for the straightforward preparation of electrophilic group transfer reagents based on the use of sulphur-containing platforms. The low prize and chemical stability of these reagents make their use feasible at any step of a synthetic sequence, and render them highly appealing for large-scale applications. In addition, the combination of these new reagents with the power of actual metal catalysis will lead to an array of useful synthetic routes that will decisively enrich the toolbox of the synthetic chemist. Campo scientifico scienze mediche e della salutemedicina di basefarmacologia e farmaciascoperta di farmaciscienze naturaliscienze chimichechimica inorganicaalogeniscienze agricoleagricoltura, silvicoltura e pescaagricolturascienze naturaliscienze chimichecatalisi Programma(i) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Argomento(i) ERC-2017-COG - ERC Consolidator Grant Invito a presentare proposte ERC-2017-COG Vedi altri progetti per questo bando Meccanismo di finanziamento ERC-COG - Consolidator Grant Coordinatore GEORG-AUGUST-UNIVERSITAT GOTTINGEN STIFTUNG OFFENTLICHEN RECHTS Contribution nette de l'UE € 1 997 500,00 Indirizzo Wilhelmsplatz 1 37073 Gottingen Germania Mostra sulla mappa Regione Niedersachsen Braunschweig Göttingen Tipo di attività Higher or Secondary Education Establishments Collegamenti Contatta l’organizzazione Opens in new window Sito web Opens in new window Partecipazione a programmi di R&I dell'UE Opens in new window Rete di collaborazione HORIZON Opens in new window Altri finanziamenti € 0,00 Beneficiari (1) Classifica in ordine alfabetico Classifica per Contributo netto dell'UE Espandi tutto Riduci tutto GEORG-AUGUST-UNIVERSITAT GOTTINGEN STIFTUNG OFFENTLICHEN RECHTS Germania Contribution nette de l'UE € 1 997 500,00 Indirizzo Wilhelmsplatz 1 37073 Gottingen Mostra sulla mappa Regione Niedersachsen Braunschweig Göttingen Tipo di attività Higher or Secondary Education Establishments Collegamenti Contatta l’organizzazione Opens in new window Sito web Opens in new window Partecipazione a programmi di R&I dell'UE Opens in new window Rete di collaborazione HORIZON Opens in new window Altri finanziamenti € 0,00