Objective
Over the past two decades researchers have been working to create synthetic small-scale machines ranging from molecular entities or miniaturized structures, to more complex assemblies of micro- and nanomaterials. These machines are able to navigate in complex environments by harvesting fuel from the surrounding media or from external power sources. One of the most sought-after applications for these miniaturized machines is to perform minimally invasive interventions, in which these devices will ultimately reduce risk, cost, and discomfort compared to conventional interventions. This has driven researchers to produce a myriad of small-scale robots loaded with therapeutic cargo. While recent research has demonstrated the potential of these devices in animal models, a number of challenges remain in moving small-scale robots into the operating theatre. Here, we propose highly integrated nanorobots capable of realizing several functions on-demand by capitalizing on recent developments in small-scale robotics, multiferroics, supramolecular chemistry, and gated materials. These nanorobots will integrate a porous inorganic active chassis made of a piezoelectric or a magnetoelectric multiferroic that will host therapeutic agents, with redox or electroresponsive supramolecular gates that will control the release of payloads. We will demonstrate for the first time that redox- and electroresponsive supramolecular machinery grafted onto the surface of piezoelectric or multiferroic platforms can be remotely controlled by means of a piezoelectrochemical potential triggered by acoustic and magnetic fields. The ultimate goal of this research consists of creating smart multifunctional nanorobots, which will act on affected sites of the central nervous system by delivering therapeutic agents and electrostimulating the rewiring of neural circuitry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- humanities arts performing arts dramaturgy
- engineering and technology nanotechnology nano-materials
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8092 Zuerich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.