Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Highly Integrated Nanoscale Robots for Targeted Delivery to the Central Nervous System

Objective

Over the past two decades researchers have been working to create synthetic small-scale machines ranging from molecular entities or miniaturized structures, to more complex assemblies of micro- and nanomaterials. These machines are able to navigate in complex environments by harvesting fuel from the surrounding media or from external power sources. One of the most sought-after applications for these miniaturized machines is to perform minimally invasive interventions, in which these devices will ultimately reduce risk, cost, and discomfort compared to conventional interventions. This has driven researchers to produce a myriad of small-scale robots loaded with therapeutic cargo. While recent research has demonstrated the potential of these devices in animal models, a number of challenges remain in moving small-scale robots into the operating theatre. Here, we propose highly integrated nanorobots capable of realizing several functions on-demand by capitalizing on recent developments in small-scale robotics, multiferroics, supramolecular chemistry, and gated materials. These nanorobots will integrate a porous inorganic active chassis made of a piezoelectric or a magnetoelectric multiferroic that will host therapeutic agents, with redox or electroresponsive supramolecular gates that will control the release of payloads. We will demonstrate for the first time that redox- and electroresponsive supramolecular machinery grafted onto the surface of piezoelectric or multiferroic platforms can be remotely controlled by means of a piezoelectrochemical potential triggered by acoustic and magnetic fields. The ultimate goal of this research consists of creating smart multifunctional nanorobots, which will act on affected sites of the central nervous system by delivering therapeutic agents and electrostimulating the rewiring of neural circuitry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2017-COG

See all projects funded under this call

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 998 720,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 998 720,00

Beneficiaries (1)

My booklet 0 0