Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Noise-Sensitivity Everywhere

Ziel

"Noise-sensitivity of a Boolean function with iid random input bits means that resampling a tiny proportion of the input makes the output unpredictable. This notion arises naturally in computer science, but perhaps the most striking example comes from statistical physics, in large part due to the PI: the macroscopic geometry of planar percolation is very sensitive to noise. This can be recast in terms of Fourier analysis on the hypercube: a function is noise sensitive iff most of its Fourier weight is on ""high energy"" eigenfunctions of the random walk operator.

We propose to use noise sensitivity ideas in three main directions:

(A) Address some outstanding questions in the classical case of iid inputs: universality in critical planar percolation; the Friedgut-Kalai conjecture on Fourier Entropy vs Influence; noise in First Passage Percolation.

(B) In statistical physics, a key example is the critical planar FK-Ising model, with noise being Glauber dynamics. One task is to prove noise sensitivity of the macroscopic structure. A key obstacle is that hypercontractivity of the critical dynamics is not known.

(C) Babai’s conjecture says that random walk on any finite simple group, with any generating set, mixes in time poly-logarithmic in the volume. Two key open cases are the alternating groups and the linear groups SL(n,F2). We will approach these questions by first proving fast mixing for certain macroscopic structures. For permutation groups, this is the cycle structure, and it is related to a conjecture of Tóth on the interchange process, motivated by a phase transition question in quantum mechanics.

We will apply ideas of statistical physics to group theory in other novel ways: using near-critical FK-percolation models to prove a conjecture of Gaboriau connecting the first ell2-Betti number of a group to its cost, and using random walk in random environment to prove the amenability of the interval exchange transformation group, refuting a conjecture of Katok."

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-COG - Consolidator Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2017-COG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

HUN-REN RENYI ALFRED MATEMATIKAI KUTATOINTEZET
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 386 363,52
Adresse
REALTANODA UTCA 13-15
1053 BUDAPEST
Ungarn

Auf der Karte ansehen

Region
Közép-Magyarország Budapest Budapest
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 386 363,52

Begünstigte (1)

Mein Booklet 0 0