Objective
Anti-cancer immunotherapy has provided patients with a promising treatment. Yet, it has also unveiled that the immunosuppressive tumor microenvironment (TME) hampers the efficiency of this therapeutic option and limits its success. The concept that metabolism is able to shape the immune response has gained general acceptance. Nonetheless, little is known on how the metabolic crosstalk between different tumor compartments contributes to the harsh TME and ultimately impairs T cell fitness within the tumor.
This proposal aims to decipher which metabolic changes in the TME impede proper anti-tumor immunity. Starting from the meta-analysis of public human datasets, corroborated by metabolomics and transcriptomics data from several mouse tumors, we ranked clinically relevant and altered metabolic pathways that correlate with resistance to immunotherapy. Using a CRISPR/Cas9 platform for their functional in vivo selection, we want to identify cancer cell intrinsic metabolic mediators and, indirectly, distinguish those belonging specifically to the stroma. By means of genetic tools and small molecules, we will modify promising metabolic pathways in cancer cells and stromal cells (particularly in tumor-associated macrophages) to harness tumor immunosuppression. In a mirroring approach, we will apply a similar screening tool on cytotoxic T cells to identify metabolic targets that enhance their fitness under adverse growth conditions. This will allow us to manipulate T cells ex vivo and to therapeutically intervene via adoptive T cell transfer. By analyzing the metabolic network and crosstalk within the tumor, this project will shed light on how metabolism contributes to the immunosuppressive TME and T cell maladaptation. The overall goal is to identify druggable metabolic targets that i) reinforce the intrinsic anti-tumor immune response by breaking immunosuppression and ii) promote T cell function in immunotherapeutic settings by rewiring either the TME or the T cell itself.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences clinical medicine oncology
- medical and health sciences basic medicine immunology immunotherapy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
9052 ZWIJNAARDE - GENT
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.