Skip to main content
Un sito ufficiale dell’Unione europeaUn sito ufficiale dell’UE
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Harnessing tumor metabolism to overcome immunosupression

Obiettivo

Anti-cancer immunotherapy has provided patients with a promising treatment. Yet, it has also unveiled that the immunosuppressive tumor microenvironment (TME) hampers the efficiency of this therapeutic option and limits its success. The concept that metabolism is able to shape the immune response has gained general acceptance. Nonetheless, little is known on how the metabolic crosstalk between different tumor compartments contributes to the harsh TME and ultimately impairs T cell fitness within the tumor.
This proposal aims to decipher which metabolic changes in the TME impede proper anti-tumor immunity. Starting from the meta-analysis of public human datasets, corroborated by metabolomics and transcriptomics data from several mouse tumors, we ranked clinically relevant and altered metabolic pathways that correlate with resistance to immunotherapy. Using a CRISPR/Cas9 platform for their functional in vivo selection, we want to identify cancer cell intrinsic metabolic mediators and, indirectly, distinguish those belonging specifically to the stroma. By means of genetic tools and small molecules, we will modify promising metabolic pathways in cancer cells and stromal cells (particularly in tumor-associated macrophages) to harness tumor immunosuppression. In a mirroring approach, we will apply a similar screening tool on cytotoxic T cells to identify metabolic targets that enhance their fitness under adverse growth conditions. This will allow us to manipulate T cells ex vivo and to therapeutically intervene via adoptive T cell transfer. By analyzing the metabolic network and crosstalk within the tumor, this project will shed light on how metabolism contributes to the immunosuppressive TME and T cell maladaptation. The overall goal is to identify druggable metabolic targets that i) reinforce the intrinsic anti-tumor immune response by breaking immunosuppression and ii) promote T cell function in immunotherapeutic settings by rewiring either the TME or the T cell itself.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Meccanismo di finanziamento

ERC-COG - Consolidator Grant

Istituzione ospitante

VIB VZW
Contribution nette de l'UE
€ 1 999 721,00
Indirizzo
SUZANNE TASSIERSTRAAT 1
9052 ZWIJNAARDE - GENT
Belgio

Mostra sulla mappa

Regione
Vlaams Gewest Prov. Oost-Vlaanderen Arr. Gent
Tipo di attività
Research Organisations
Collegamenti
Costo totale
€ 1 999 721,00

Beneficiari (1)