Obiettivo
Each year, 511 million people contract a hospital-acquired infection; 13,8 million die. These “nosocomial” infections are transmitted via bed linen, drapes, towels, pyjamas, staff clothing, and so on. The WHO says they represent “the most frequent adverse event during care delivery and no institution or country can claim to have solved the problem yet.” The consequences are grave: “prolonged hospital stays, long-term disability, increased resistance of microorganisms to antimicrobials, massive additional costs for health systems, high costs for patients and their family, and unnecessary deaths.” Europe shares the burden: with an average prevalence of 10%, 3 million deaths and €11 billion of healthcare costs, there is a pressing need to find a solution.
Nano Textile is bringing one to market. Its experienced team was assembled to commercialise cutting edge technology developed by renowned nanotechnology scientist, Emeritus Professor Aharon Gedanken, at Bar Ilan University. Professor Gedanken’s team have built a sonochemical reactor that embeds zinc oxide nanoparticles into textile fabric fibres via a one-step nanometric explosion process. It is cost effective and transfers enduring antibacterial properties to readymade fabric – without colouration, toxicity or other common issues. Transferring technology typically used in aerospace engineering into textiles, Nano Textile will capitalise on increasing awareness of the need for effective antibacterial control programs in healthcare facilities. The EC has already recognised the innovation’s potential impact, having funded €8,3 million of a 17-participant, €12 million FP7 project – SONO – coordinated by Professor Gedanken between 2008 and 2013. The proprietary, proven technology that emerged has been exclusively licensed by Bar Ilan University to Nano Textile. Successful commercialisation has the potential to reduce morbidity on a large scale, save millions of lives and ease cost burdens on strained healthcare systems.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- engineering and technologymaterials engineeringfibers
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineering
- engineering and technologymaterials engineeringtextiles
- engineering and technologymaterials engineeringcoating and films
- engineering and technologynanotechnologynano-materials
Programma(i)
- H2020-EU.2.1.2. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies Main Programme
- H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
- H2020-EU.2.1.3. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials
- H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
Invito a presentare proposte
Vedi altri progetti per questo bandoBando secondario
H2020-SMEINST-1-2016-2017
Meccanismo di finanziamento
SME-1 - SME instrument phase 1Coordinatore
5268101 Ramat Gan
Israele
L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.